Genome-wide Gene Expression Profiling in Fission Yeast http://www.sanger.ac.uk/PostGenomics/S pombe Jürg Bähler **The Wellcome Trust Sanger Institute / Cancer Research UK**

Post-genomic vs traditional experiments:

Genes or gene products:	1 2 3	n
Gene cloning	1 1 1	
Gene expression •	Horizontal approach	\rightarrow
Gene deletion		
Protein localization	al app	
Protein interactions	roach	
Enzymatic activities	↓ ▼	

...

Schizosaccharomyces pombe (Fission Yeast)

- unicellular eukaryote (fungus)
- genome recently sequenced: ~14 Mb, <5,000 genes
- easy to handle / genetics
- evolutionary distant to S. cerevisiae
- no beauty but what a beast!

Primer Design

- Annealing temperature: 58-62°C; GC content: 40–60%
- Product length: 200–500 bp; <2500 bp from gene end
- **Products are 100% exon sequence**
- Products have Blast score <400 with other fission yeast sequences
- All ORFs (nuclear and mitochondrial), 'pseudogenes', introns, bacterial control genes

Unspecific hybridisation to similar probes:

5'-aminolink surface chemistry

- covalent attachment of DNA via 5'-aminolink modification
- single-stranded probes can be made after attachment

probes can distinguish transcriptional direction
 entire length of probe accessible for hybridization
 high sensitivity

The fission yeast genome on a microarray

0

00

0

6050 spots printed in duplicate: 12,100 spots

Data Processing Pipeline

- Image Analysis Software: determine signal ratios (e.g., GenePix)
- InHouse program for initial data processing: filter weak and irreproducible signals, local normalization, quality control

- Data mining using various software (GeneSpring, Cluster, SAM, ArrayMiner,...)
- Oracle Database MIDAS: Plate tracking and storage of raw data

Local Normalization:

Running window 1000 spots

Accuracy of signal ratios determined by spiking of <i>S. cerevisiae</i> RNA			
Spiked ratios	Measured median ratios (range)	Range of signals	
1:2	1.9 (1.8 - 2.1)	490/270 – 2,080/32,060	
1:5	5.5 (4.3 - 7.2)	420/90 – 58,320/10,990	
1:10	9.7 (5.8 - 11.1)	380/40 – 35,890/5620	
1:20	19.6 (12.2 - 23.6)	340/20 – 56,900/3110	

Reproducibility of signal ratios and intensities:

Reproducibility of array data:

Measurement	Mean SD (Range)	CV (Range)
Within array replicates	0.04 (0.03-0.06)	4.4% (3.1-6.2%)
Technical repeats	0.04 (0.02-0.06)	4.5% (2.5-6.3%)
Biological repeats	0.07 (0.05-0.10)	6.4% (4.9-8.1%)

Three main projects:

Expression Profiling During Sexual Differentiation: Juan Mata synchronized meiotic cell cultures transcription factor mutants genome-wide transcriptional program Stage-specific gene expression regulatory sequence motifs and circuits

Vegetative cell cycle

Meiotic timecourses: major clusters of gene expression

Functions of early genes:

Known meiotic transcription factors are themselves regulated:

Other transcription factors up-regulated during meiosis:

Characterization of *atf* **function during meiosis:**

Transcriptional Regulation During Meiosis

Global regulation of genes up-regulated in N-starvation:

Stress Response Mechanisms:

Dongrong Chen Mark Toone, Nic Jones (Paterson, Manchester)

various stresses: heat, osmotic, toxic metals, ...
oxidative stress: time, dose, different oxidants

> general vs specific stress responses
 > acute vs adaptive stress response
 > long-term adaptation to stress
 > regulatory sequence motifs and circuits

Eukaryotic stress-activated protein kinase pathways

Importance of stress and stress response pathways

<u>in human pathology:</u>

- Ethanol induced liver damage
- Ischemic hepatitis
- Ischemia/reperfusion injury catalyzed by Xanthine
 - Oxidase- transplantation biology
 - cerebrovascular injury
- Parkinson's disease
- Amyotrophic lateral sclerosis
- Atherosclerosis
- Ageing (senescence)
- Cancer

<u>Homeostasis:</u>

- Kidney cells exposed to dramatic fluctuations in osmolarity
- Metabolism of toxic compounds in the liver
- Apoptosis
- Immune system
- Resistance to DNA damaging agents

<u>CESR</u>: Core Environmental Stress Response

The transcriptional response to stress consists of general and stress-specific gene induction:

Regulation of stress response genes:

Regulation of stress response genes:

CESR

Non-CESR

Different regulation of stress response genes in two yeasts:

Budding Yeast

Fission Yeast

core stress response genes

Growth media influence stress gene expression:

Increasing cell density and stress gene expression:

Increasing cell density and stress gene expression:

Expression Profiling During Cell Cycle: Gabriella Rustici synchronized cell cultures cell cycle and transcription factor mutants > periodic (stage-specific) gene expression gene function ('guilt by association') regulatory sequence motifs and circuits

All genes: 2 experiments

~200 periodic genes: 7 different experiments

Average expression profiles of four main clusters (7 experiments/158 samples):

4 major waves of transcription:

Average gene expression profiles:

Expression ratios

Minutes after synchronization

Principal component analysis:

Major Conclusions:

• 4 distinct waves of transcription, with gap during much of G2 phase where no genes seem to be regulated

~200 periodic genes (4% of genome):
 26 of those genes have been described as cell-cycle regulated, while majority of remaining genes have unknown function

- Study regulation of periodic cell cycle transcription using various mutants, overexpressors, and Chip-chip
- Compare and contrast with periodically expressed genes in other organisms

General and simple recommendations:

Repeat biological experiments to get statistically sound data

Plan and design experiments carefully / controlled and standardized conditions
 Compare data from different experiments The more data the better!

Explore data with various tools

Thank you!

Juan Mata Gavin Burns Gabriella Rustici Dongrong Chen Rachel Lyne Chris Penkett Jürg Bähler

Mark Toone (Paterson) Nic Jones (Paterson) **Alvis Brazma (EBI)** Katja Kivinen (EBI) **Helen Parkinson (EBI) Paul Nurse (CRUK)** John Sgouros (CRUK)

Sanger Institute: Dave Vetrie Cordelia Langford Oliver Dovey Val Wood **Roger Pettett Rob Andrews Adam Butler Kate Rice Bart Barrell**

Genome-wide Gene Expression Profiling in Fission Yeast http://www.sanger.ac.uk/PostGenomics/S pombe **The Wellcome Trust Sanger Institute / Cancer Research UK**