1. Analysis and mining of large-scale microarray data sets

2. Global Gene Expression Programs in Fission Yeast

Slides available at: http://www.sanger.ac.uk/PostGenomics/S_pombe/

Post-genomic vs traditional experiments:

Genes or gene products: 1	2 3 n
Gene cloning	
Gene expression —	Horizontal approach
Gene deletion	erti
Drotoin localization	
Protein localization	
Protein interactions	
	h
Enzymatic activities	↓

...

The global view...

Global map as an approximation of reality:

Gene expression data

Evolution has carried out the <u>perfect functional</u> <u>genomic experiment</u>:

a multi-million year, genome-wide conditional knock-out mutagenesis, accompanied by exhaustive phenotypic screens. The results are recorded in gene expression programs activated under various conditions.

Microarrays: Principle of Differential Hybridization

Data Collection

Data evaluation

Programming and curation support

Arrayer

Biorobotics MicroGrid II

- 48 pins
- 200 μm spots, 250 μm spacing
- >20,000 spots/slide
- 100 slide capacity

Split pin used for printing

Scanner

- 5µm resolution
- simultaneous dual laser scanning
- GenePix analysis software

Genepix 4000B (Axon)

Data Processing Pipeline

1 Image Analysis Software: determine signal ratios (GenePix)

- 2 InHouse program for initial data processing: filter weak and irreproducible signals, local normalization, quality control
- 3 Data mining using various software (GeneSpring, R/Bioconductor, SAM, ...)

4 Public Database – ArrayExpress

Local Normalization:

Running window 1000 spots

Replicate data are more similar to each other after normalization:

Lyne et al. (2003). BMC Genomics 4:27

Self vs Self: same sample

Cy3

Cy5

Reproducibility of signal ratios and intensities:

Reproducibility of array data:

<u>Measurement</u>	<u>SD Mean (Range)</u>	<u>CV (Range)</u>
Within array replicates	0.04 (0.03-0.06)	4.4% (3.1-6.2%)
Technical repeats	0.04 (0.02-0.06)	4.5% (2.5-6.3%)
Biological repeats	0.07 (0.05-0.10)	6.4% (4.9-8.1%)

Lyne et al. (2003). BMC Genomics 4:27

Reproducibility in 4 experiments: ste11 gene

DESIGN OF DYE REVERSAL REPLICATE

- Replicate experiment in which we assess the same mRNA pools but invert the dyes used
- The replicates are independent biological experiments
- Balanced, deals with biases of dye incorporation

Clustering techniques

Aim: Discover structure/patterns in the data

- Classify/cluster genes according to their expression profiles
- Apply special visualisation techniques

Fundamental: Different definitions will lead to different classifications

Brand

Measures of similarity/distance for gene expression

- Aim: quantify the degree of similarity between two gene expression profiles
- There are dozens of similarity metrics
- Examples:
 - Euclidean distance
 - Standard correlation
 - Pearson correlation

Hierarchical gene clustering:

experimental conditions

>6x induced

Hierarchical Gene Clustering:

Hrs after meiotic induction

E x p r e s s i o n 7.5 5.0 4.0 3.0 2.5 2.0 1.5 1.2 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

Ribosomal Gene Cluster

E x p r e s s i o n

7.5 5.0 4.0 3.0 2.5 2.0 1.5 1.2 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

Clustering of genes regulated during the cell cycle:

Min after inducing synchrony

4.0

2.5

2.0

1.2

1.0

0.9

8.0

0.7

0.6

0.5

0.4

Mike Eisen

K-means clustering

- Classifies genes into non-overlapping groups
- The number of clusters (k) is specified by the user
- Unsupervised method

Early

Late

Response to starvation

Self-Organizing Maps (SOMs)

- •User specifies number of sets by indicating how many rows and columns their data should be divided into
- •There is relation within a set AND relation of one set to another
- •Particularly suitable for large datasets

Principal component analysis:

Project multi-dimensional data into 2 or 3 dimensions

Principal Components Analysis

Reduce multi-dimensional datasets to 3 dimensions:

Finding genes with similar expression profiles: significant correlations

Comparing lists using Venn diagrams

Which types of genes are enriched in a cluster?

- Idea: Compare your cluster of genes with lists of genes with common properties (function, expression, location).
- Find how many genes overlap between your cluster and a gene list.
- Calculate the probability of obtaining the overlap by change (using the hypergeometric distribution).
 This measures if the enrichment is significant.
- This analysis provides an unbiased way of detecting connections between expression and function.

List of genes of certain function

"I think you should be more explicit here in step 2."

Schizosaccharomyces pombe (Fission Yeast)

- unicellular eukaryote (fungus)
- genome: ~5,000 genes
- easy to handle / genetics
- evolutionary distant to S. cerevisiae
- simple model system
- no beauty but what a beast!

Now –which one is the 'higher' eukaryote?!

•		The

fission yeast genome on a microarray

6500 spots printed in duplicate: 13,000 spots

Vegetative cell cycle

Three main projects:

<u>CESR</u>: Core Environmental Stress Response

Regulation of stress response genes:

>6x induced

>6x repressed

Stress-regulated genes tend to have no introns:

Bias against introns among oxidative stress genes:

Gene list	Genes with introns	Genes without introns	Proportion of genes with introns	Probability
Genome	2289	2741	45.5%	-
Any	1349	1721	43.9%	0.003
Any >2x	467	840	35.7%	6.7E-17
Any >4x	55	272	16.8%	1.2E-29
Any ≤2x	882	881	50.0%	1.0
Any ≤4x	1294	1449	47.2%	0.996
All	37	89	29.4%	1.3E-04
All >2	12	52	18.8%	6.1E-06
All >4	3	31	8.8%	4.0E-06

- Oxidative stress response enriched for genes without introns
- Bias most significant for genes that are most highly regulated

- Splicing takes longer than transcription: Adaptation for fast response?
- Splicing sensitive to oxidative stress?

Increasing cell density and stress gene expression:

Increasing cell density and stress gene expression:

Growth media influence stress gene expression:

CESR induced CESR repressed

Meiosis induced

Stress response is not an all or nothing effect

 Cells fine-tune and adjust regulation in response to subtle changes in environment

- Stress response genes show highly variable expression levels reflecting sophisticated regulation to various external factors
- -> tightly controlled conditions essential for microarray experiments

Microarrays measure mRNA steady-state levels, not transcription

Global estimates of transcriptional efficiency: <u>ChIP-chip with RNA polymerase II</u>

Cause of differences in gene expression profiles?

Transcription peaks at 15 minutes

General and simple recommendations:

Repeat biological experiments to get statistically sound data

Plan and design experiments carefully / controlled and standardized conditions

Compare data from different experiments / Explore data with various tools

Global Gene Expression Programs in Fission Yeast

http://www.sanger.ac.uk/PostGenomics/S_pombe

Jürg Bähler

Wellcome Trust Sanger Institute / Cancer Research UK

<u>Cell cycle control of gene</u> <u>expression</u>

- Universal level of regulation during cell cycle
- Budding yeast: 400-800 periodically expressed genes
- Fission yeast: ~35 periodic genes reported

- Genome-wide overview of cell cycle-regulated gene expression in fission yeast
- Conservation of periodic gene expression programs?

Periodic Gene Expression during Cell Cycle:

DNA microarrays to study stage-specific gene expression during cell cycle

Synchronization of cells in different ways:

centrifugal elutriationconditional cell cycle mutants

Rustici et al. (2004) Nat Genet 36:809

<u>Phaseogram</u>: ~400 periodically expressed genes,

Clustering: 4 major waves of gene expression

Principal component analysis:

Major cell cycle transcription factors

Regulation of periodically transcribed genes

Transcriptional regulation of clusters 1 and 2

Transcriptional regulation by Sep1p and Ace2p:

Mutant phenotypes

wild type

sep1∆

ace2∆

ace2 Δ sep1 Δ

P. Lindner, 1893

Identification of regulatory promoter motifs:

motif logos: Forkhead TGTTTACA. Novel 1 ᠳᡗ᠕ᠮ᠍᠍ᢩᢛ Novel 2 TGCATT Ç MCB 1 CGCGTI MCB 2 GCGACCCGTC Ace2 CAGULAT Histone Novel 3 CGCT

Regulatory gene expression networks:

S

Core cell cycle-regulated genes:

Core cell cycle-regulated genes:

Mitosis and cell division:

plo1, ark1, fin1	Polo, Aurora, and NimA kinases
slp1	Activator of APC
wis3	Putative cell-cycle regulator
klp5, klp6, klp8	Kinesin microtubule motor
mob1, sid2	Proteins involved in MEN/SIN
myo3	Myosin II heavy chain
mid2	Protein involved in cytokinesis
ace2	Transcription factor
imp2	Protein involved in cell division
eng1	Glucanase for cell separation
chs2	Protein involved in septum formation
mac1	Putative role in cell separation
	plo1, ark1, fin1 slp1 wis3 klp5, klp6, klp8 mob1, sid2 myo3 mid2 ace2 imp2 eng1 chs2 mac1

Core cell cycle-regulated genes:

DNA replication:

POL1, POL2	pol1 and cdc20	DNA polymerases α and ϵ
RFA1	ssb1	Single-stranded DNA-binding protein
CDC6	cdc18	Regulator of DNA replication initiation
MRC1	mrc1	DNA replication checkpoint protein
RNR1	cdc22	Ribonucleotide reductase
SMC3, MCD1	psm3 and rad21	Cohesins
HTZ1	pht1	Histone variant
8 histone genes	9 histone genes	Histones H2A, H2B, H3, and H4

Others:

mik1	SWE1	Kinase inhibiting cyclin-dependent kinase
cig2	CLB1-CLB6	B-type cyclins
msh6	MSH6	Mismatch-repair protein
rhp51	RAD51	DNA repair protein

Human and fission yeast only:

cdc2 kinase and cdc25 phosphatase

Human and budding yeast only:

MCM complex DNA replication genes

Major Conclusions

- 4 major waves of transcription,
 ~400 periodic genes (8% of genome)
- Conserved transcription factors but differences in regulatory circuits between fission and budding yeasts: rewiring during evolution to accommodate different cell cycle phases
- Periodic transcription not necessarily conserved, but core set of universally regulated genes with basic functions in cell cycle progression

Regulation of Gene Expression at Multiple Levels

Global data on different layers of gene expression control

Microarray-based approaches to measure control at multiple levels

- Integrate data from different levels of regulation
- Dynamic changes in regulation, genetic and environmental perturbations

<u>ChIP-on-chip:</u>

Direct interaction of TFs with promoters

- 1. Tag TF (HA, TAP, by homologous recombination in the yeast)
- 2. 'Cross-link' the TF to chromatin
- 3. Immunoprecipitation of TF-chromatin complex
- 4. Label DNA and hybridise to array of intergenic regions

R. Young

ChIP-on-chip

(global mapping of transcription factor binding sites)

Vs

Expression profiling

(transcription factor mutant/overexpressor vs wild type?

Expression profiling: direct vs indirect effects? functional role

ChIP-chip:

direct functional? divergent genes?

Integrate expression and ChIP-chip data

Gabriella Rustici **Daniel Lackner** Samuel Marguerat Juan Mata Val Wood Brian Wilhelm Chris Penkett **Stephen Watt** Luis López-Maury Falk Schubert Sofia Aligianni Tannia Gracia

Victor Chang Cardiac Research Institute, Sydney, Australia Thomas Preiss Traude Beilharz

