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Dynamic repertoire of a eukaryotic transcriptome
surveyed at single-nucleotide resolution
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Recent data from several organisms indicate that the transcribed
portions of genomes are larger and more complex than expected,
and that many functional properties of transcripts are based not
on coding sequences but on regulatory sequences in untranslated
regions or non-coding RNAs1–9. Alternative start and polyadenyla-
tion sites and regulation of intron splicing add additional dimen-
sions to the rich transcriptional output10,11. This transcriptional
complexity has been sampled mainly using hybridization-based
methods under one or few experimental conditions. Here we
applied direct high-throughput sequencing of complementary
DNAs (RNA-Seq), supplemented with data from high-density til-
ing arrays, to globally sample transcripts of the fission yeast
Schizosaccharomyces pombe, independently from available gene
annotations. We interrogated transcriptomes under multiple con-
ditions, including rapid proliferation, meiotic differentiation and
environmental stress, as well as in RNA processing mutants to
reveal the dynamic plasticity of the transcriptional landscape as
a function of environmental, developmental and genetic factors.
High-throughput sequencing proved to be a powerful and quanti-
tative method to sample transcriptomes deeply at maximal reso-
lution. In contrast to hybridization, sequencing showed little, if
any, background noise and was sensitive enough to detect wide-
spread transcription in .90% of the genome, including traces of
RNAs that were not robustly transcribed or rapidly degraded. The
combined sequencing and strand-specific array data provide rich
condition-specific information on novel, mostly non-coding tran-
scripts, untranslated regions and gene structures, thus improving
the existing genome annotation. Sequence reads spanning exon–
exon or exon–intron junctions give unique insight into a surpris-
ing variability in splicing efficiency across introns, genes and con-
ditions. Splicing efficiency was largely coordinated with transcript
levels, and increased transcription led to increased splicing in test
genes. Hundreds of introns showed such regulated splicing during
cellular proliferation or differentiation.

To analyse the S. pombe transcriptome at the best possible resolu-
tion, we used Illumina 1G to sequence directly cDNA synthesized
from poly(A)-enriched RNA. This approach kept the proportion of
sequence reads from ribosomal RNA low (,10%) without biasing
against messenger RNAs with short poly(A) tails12. We obtained .23
million reads of an average length of 39.1 base pairs (bp), represent-
ing ,60 genome lengths, from cells proliferating exponentially in
rich medium. In addition, we acquired .99 million reads of tran-
scriptomes from five stages of meiotic differentiation, representing
an additional ,190 genomes (Supplementary Table 1). Sequence
reads were mapped back to both the spliced and the unspliced
reference genome13 to determine the numbers of reads hitting each

genomic base-pair position. Approximately 60% of all reads speci-
fically mapped to one genomic region over 100% of their sequence,
whereas .85% of the reads uniquely mapped over 90% of their
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Figure 1 | Quantitation of sequence coverage. a, Scatterplot comparing gene-
expression scores based on Affymetrix expression-chip hybridization signals (y
axis) with gene-expression scores based on high-throughput sequencing (x
axis). The dynamic range of hybridization signals is limited by the scanner. The
corresponding Pearson correlation is shown at the bottom right. b, Box-and-
whisker plots (in which the whiskers denote the 5th and 95th quantiles) of log2-
transformed numbers of sequence reads per nucleotide for the following
genomic regions: all intergenic sequences, introns, coding sequences, 59 and
39 UTRs (based on sequencing), and newly identified transcripts (based on
sequencing and tiling chips). Diamonds represent data outside of the quantiles.
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sequence. The remaining reads either mapped to repeated sequences
or were of poor quality. RNA expression levels determined from
sequence-read numbers strongly correlated with those determined
from hybridization signals, indicating that sequencing provides
quantitative data on transcript levels (Fig. 1a).

The 5% of transcripts present at the lowest steady-state levels in
rapidly proliferating cells12 accumulated ,777 sequence-read hits
and 94.9% coverage on average, indicating that the transcriptome
was sampled deeply enough to detect even genes with low expression
levels. We modelled sequencing depth for rapidly proliferating cells:
given the expression scores for all annotated genes, the model pre-
dicts that 99% of these genes have .50% sequence-read coverage
(Supplementary Fig. 1). In agreement with this prediction, we
obtained .50% sequence-read coverage for 99.3% of all annotated
genes. The 41 genes with ,50% coverage included 20 transposon-
related long terminal repeats and 13 dubious genes or pseudogenes
(Supplementary Table 2). Using cDNA microarrays, only 80–90% of
genes yield measurable signals in proliferating cells14, whereas the
remaining genes are only highly expressed under specific conditions
such as meiosis or stress15,16. These data suggest that the sequencing
approach is sensitive enough to detect basal ‘transcriptional noise’
from genes that are not actively expressed.

As expected, intergenic regions were hit by fewer sequence reads
than coding regions (Figs 1b and 2a). However, we obtained sequence
data from ,94% and .99% of the nuclear and mitochondrial
genomes, respectively, suggesting that almost the entire genome is

transcribed to some degree, consistent with the considerable overlap
and complexity among different transcripts reported for other eukar-
yotes9. Reverse transcription followed by polymerase chain reaction
(RT–PCR) controls verified that even intergenic regions with poor
sequence-read coverage reflect expressed RNAs rather than technical
noise from spurious sequences (Supplementary Fig. 2). Thus, our
sequence data provide direct evidence for widespread transcription;
it has been suggested that as much as 90% of all RNA polymerase II
(Pol II) initiation events represent transcriptional noise17. Taken
together, unlike for hybridization-based approaches, sequencing
appears to produce little or no background noise, and the dynamic
range of detected transcripts is only limited by sequencing depth.

To verify and compare the sequence data with an established plat-
form, we used Affymetrix chips containing 25-mer probes tiled at
,20-nucleotide intervals across both strands of the S. pombe
genome. We interrogated transcriptomes under a wide range of con-
ditions (Supplementary Table 1), thus independently sampling gene
expression at lower resolution but with strand-specific information
(Fig. 2a).

The combined sequence and hybridization data revealed hundreds
of novel transcribed regions. To distinguish between separate tran-
scripts and extensions to known gene structures, we analysed tiling-
chip data from a prp2 splicing-factor mutant18 along with sequence
‘trans-reads’ spanning unannotated splice junctions (Figs 2a and 3d).
Combined with manual curation, these analyses helped to refine
annotated gene structures, including 75 revisions of protein-coding

 

b

c

a

2,299 2,300 2,301 2,302 2,303 2,304

Genome position (kb)

0 20 40 60 80

Pol II occupancy

Bins of average gene position

Coding region

Non-coding transcripts Anti-sense transcripts

500.5

0
1
2
4

16

64

256

S
eq

ue
nc

e 
re

ad
s

0
1
2
4

16

64

256

S
eq

ue
nc

e 
re

ad
s

SPACC222.12c

SPACC222.11
967 968 969

–8

–6

–4

–2

Log
2  hyb

rid
ization signal

Log
2  hyb

rid
ization signal–8

–6

–4

–2 SPBC16H5.02

SPBC12D12.01 

Expression score

Quiescent
Ox. stress

Heat shock
Meiosis 5
Meiosis 4
Meiosis 3
Meiosis 2
Meiosis 1

YE
MM

Quiescent
Ox. stress

Heat shock
Meiosis 5
Meiosis 4
Meiosis 3
Meiosis 2
Meiosis 1

YE
MM

25% 50% 75%

-0.5

0

–1.0

0.5

d

A
ve

ra
ge

 s
ig

na
l

Quiescent
Ox. stress

Heat shock
Meiosis 5
Meiosis 4
Meiosis 3
Meiosis 2
Meiosis 1

YE
MM

Figure 2 | Analyses of novel transcripts. a, Plot depicting numbers of
sequence reads (log-scale, black) and tiling-chip hybridization signals (log2,
red) across the genomic region indicated in the centre (coordinates in kb) for
forward (top) and reverse (bottom) strands. The sequence data are not
strand-specific. A novel non-coding transcript (dark blue) containing an
intron (green) is indicated in the middle. The nine trans-reads across the
exon–exon junction are indicated as broken blue bars. b, Tiling-chip
hybridization signals (in which the strength of colour reflects the signal-
distribution quartile) across the genomic region shown in the centre for

forward (top) and reverse (bottom) strands, with rows reflecting ten
experimental conditions (Supplementary Table 1). Rapid proliferation was
sampled in rich (YE) and minimal (MM) media. Blue bar, novel meiosis-
specific transcript; red bar, alternate meiosis-specific 59 UTR. c, Hierarchical
clustering of non-coding and anti-sense transcripts by their tiling-chip
expression scores across multiple conditions as in b. d, Average Pol II
occupancy across coding regions for genes with lowest to highest mRNA
levels (grey to black via red to yellow shades). The average profile of the novel
transcripts is shown as a thick blue line.
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regions and identification of ,20 new introns in known genes.
Conservative data analysis also revealed 453 novel transcripts, only
26 of which seemed to be coding for small proteins (,150 amino
acids); 37 of the apparently non-coding transcripts overlapped
known genes in the anti-sense direction (Supplementary Table 3).
The 427 non-coding RNAs showed an average length of ,825
nucleotides and a GC content that was similar to the 135 annotated
non-coding RNAs but higher than for intergenic regions overall
(33.0% versus 30.6%; P , 2 3 10216, Wilcoxon test). The non-cod-
ing RNAs included the elusive, recently discovered Ter1 telomerase
RNA19,20, which was induced during meiosis (SPNCRNA.214;
Supplementary Table 3). Expression of 14 non-coding RNAs was
independently confirmed by RT–PCR (Supplementary Fig. 3). This
analysis revealed bi-directional transcription across all tested regions,
including the well-characterized nmt1 gene, although most regions
showed more transcripts from one strand. Given the ubiquitous
transcription throughout the genome, the novel transcripts described
here probably only hint at the true level of transcriptional complex-
ity.

Sequence-read numbers across the newly identified transcribed
regions were lower than numbers across annotated coding regions
(Fig. 1b). Only 13 of the novel transcripts were evident from the
tiling-chip data in proliferating cells, whereas another 79 were only
substantially expressed under specific conditions, most notably dur-
ing meiosis or quiescence (Fig. 2b, c and Supplementary Table 3). The
antisense RNAs were particularly enriched for highly regulated tran-
scripts, many of which peaked during the meiotic divisions (Fig. 2c).

To test whether some of the newly identified regions reflect cryptic
transcripts that are degraded in the nucleus, we analysed RNA iso-
lated from an rrp6 mutant defective in nuclear exosome function21,22:
36 of the novel transcripts were more highly expressed in this mutant
such that they became evident also on tiling chips (Supplementary
Table 3). These data raised the possibility that many newly identified
regions are strongly transcribed but rapidly degraded by different
surveillance systems21. To test this hypothesis, we globally measured
Pol II occupancy (reflecting transcriptional activity12). Overall, Pol II
occupancy across the new regions was comparable to the location of
10–20% of genes with the lowest levels of transcription (Fig. 2d). We
conclude that most newly identified regions were not robustly
expressed in proliferating cells, but that the sequencing approach
was sufficiently sensitive to detect transcriptional traces below the
detection limit of hybridization-based approaches.

The combined sequence and hybridization data provided a rich
source to analyse transcript structures at maximal resolution. High
densities of overlapping transcripts can confound the sequence
data, and decreasing read-numbers towards the 59 ends, reflecting
oligo(dT) priming (Figs 1b and 3a), render it difficult to determine
accurately transcript lengths of long genes. The hybridization data are
less affected by these issues because they distinguish transcriptional
direction and do not show any 59 bias (Fig. 3a and Supplementary
Fig. 4). Together, the two approaches provided complementary
data on untranslated regions (UTRs) for most S. pombe genes
(Supplementary Table 4). For many other genes, which were mostly
expressed at low levels and did not pass our confidence cutoffs, the
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Figure 3 | Analyses of transcript structures. a, Plot depicting sequence
reads and tiling-chip signals as in Fig. 2a. Vertical dark blue lines,
transcription start and end sites determined by sequencing; green boxes,
introns. b, Scatterplot and histograms showing length distributions of 39 and
59 UTRs based on tiling-chip data. c, Transcripts with significantly larger
(red) or smaller (blue) UTRs for selected mRNA properties (top) or GO

categories (bottom, green), based on tiling-chip data (triangles) or on tiling-
chip and sequence data (squares) (Wilcoxon test, P , 0.05, Hochberg-
adjusted for multiple tests). Vertical dashed lines: median UTR lengths.
d, Tiling-chip hybridization signals as in Fig. 2b, showing a novel intron that
is not spliced in the prp2 mutant (green bar) and an alternate 59 UTR (red
bar).
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UTRs could be mapped by visual inspection. UTRs determined by
hybridization or sequencing showed good agreement with each other
and also with the previously known UTRs (Supplementary Table 5).
The median 59- and 39-UTR lengths determined by hybridization
were 152 and 169 nucleotides, respectively, with a mean combined
length of 465 nucleotides (Fig. 3b). Thus, the UTRs of fission yeast are
substantially larger than those of budding yeast, which show a mean
combined length of 211 nucleotides5.

We compared UTR-length distributions for different functional
categories (Fig. 3c). The most stable transcripts12 had short 59 UTRs,
whereas the least stable transcripts had long 59 and 39 UTRs, which
may contain regulatory signals for RNA turnover. An analysis of
Gene Ontology (GO) categories with significantly longer or shorter
UTRs (Fig. 3c) uncovered similarities to budding yeast5. For example,
transcripts encoding protein kinases and membrane proteins had
long 59 UTRs, whereas ribosome-biogenesis genes had short
59 UTRs in both yeasts, indicating that UTR-length distributions
show some conservation in these distantly related yeasts.

Sampling UTR lengths under different conditions allowed detec-
tion of transcript-size regulation (Supplementary Table 4). Our data
confirmed the known transcripts with alternate start sites or poly-
adenylation sites produced from cig2 and wos2, respectively23,24.
Using a conservative approach, we identified 27 additional tran-
scripts with alternate start sites during meiosis or stress (Figs 2b
and 3d, and Supplementary Table 6). Alternate polyadenylation sites
were more abundant, affecting ,187 transcripts (Supplementary
Table 6). Transcription-termination sites were generally less well
defined than start sites and also varied across different conditions
(Fig. 3d and Supplementary Fig. 5).

The resolution of the tiling chips was limiting to analyse splicing
owing to the small size of most introns (,100 nucleotides). The
sequence data, however, provided unprecendented insights into
splicing of the 45.4% intronic genes of S. pombe13. Both unspliced
and spliced transcripts were present in the total RNA preparations;

accordingly, we also obtained reads covering introns, albeit at lower
numbers than for exons (Figs 1b and 3a). Importantly, sequencing
provided direct evidence for splicing owing to ‘trans-reads’ spanning
exon–exon junctions, thus confirming ,93% of predicted introns
and hugely reducing unsupported gene structures. We found no
evidence for the existence of alternate splicing in S. pombe.

To estimate splicing efficiencies, we determined normalized num-
bers of sequence reads spanning exon–exon and corresponding
exon–intron junctions for all introns (Supplementary Table 7).
This calculation of splicing efficiency exploits relative read numbers
and is therefore internally normalized for expression levels and
sequencing depth. Median numbers of spliced transcripts were only
,2-fold higher than numbers of corresponding unspliced tran-
scripts, suggesting a surprisingly large cellular portion of unprocessed
mRNAs (Supplementary Table 7). Average splicing efficiency was
similar for different intron positions within genes (Supplementary
Fig. 6). Splicing efficiency strongly varied, however, among different
genes and conditions. A conservative analysis uncovered 254 genes
(314 introns) that were more efficiently spliced during meiotic dif-
ferentiation than in proliferating cells (Supplementary Table 8).
These genes included 9 of 12 known meiotically spliced genes25,
whereas the 3 remaining genes showed increased meiotic splicing
below our cutoff. Such ‘regulated’ splicing was evident in all five
differentiation stages tested, but was most prevalent during meiotic
prophase and nuclear divisions (Fig. 4a). In some genes all introns
showed regulated splicing, whereas in others only selected introns
were regulated (Supplementary Table 8)—a finding that was robust
to lowering the cutoff. The median proportion of introns per gene
showing regulated splicing was 50%, and regulated splicing showed
no preference for specific intron positions.

The surprisingly large, yet conservative, list of genes with increased
meiotic splicing was highly enriched for genes showing increased
transcript levels during meiosis26 (P , 2 3 10220, hypergeometric
test). Coordinated increases of meiotic gene expression and splicing
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Figure 4 | Dynamics of splicing efficiency reflects transcription.
a, Hierarchical clustering of introns by their splicing efficiency in five stages
of meiotic differentiation (M1 to M5) relative to their splicing efficiency
during rapid proliferation (YE). b, Plot depicting log-scale numbers of
sequence reads normalized for sequencing depth across meu31 (intron
depicted as green bar), colour-coded by experimental condition. Numbers of
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c, Scatterplot comparing median splicing efficiency for intron-containing
genes with mRNA levels based on expression-chip hybridization signals.

Shades of blue reflect the gene density, and Pearson correlation is shown at
the bottom right. d, RT–PCR data to quantify splicing of spo6 transcript as a
function of transcription. Left: RNA levels before and 18 h after
overexpression of Mei4 using the nmt1 promoter (Pnmt1)27; right: RNA
levels before and up to 1 h after direct overexpression of spo6 using the urg1
promoter (Purg1)30. Data from primers within exons (solid) or across
exon–intron junctions (dashed) are shown for two different exons or
junctions, respectively.
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were also directly evident from the sequence data (Fig. 4b).
Moreover, meiotic transcripts showed similar profiles for gene
expression and splicing efficiency during meiosis (Supplementary
Fig. 7). A reciprocal analysis uncovered 478 genes (559 introns) that
were more efficiently spliced in proliferating cells than during mei-
osis (Fig. 4a and Supplementary Table 8). This list was enriched for
genes highly expressed in proliferating cells16, including ribosomal-
protein genes (P ,2 3 1027, hypergeometric test). These data sug-
gest that increased transcription can promote splicing. Indeed, splic-
ing efficiency was significantly correlated with mRNA levels (Fig. 4c).
Moreover, a functional analysis revealed widespread relationships
between expression levels and splicing efficiency in proliferating cells
(Supplementary Table 9). For example, highly expressed genes, such
as those repressed during stress15, or conserved genes16 were more
efficiently spliced than genes induced during stress or than S. pombe-
specific genes.

To test directly whether increased transcription can lead to
increased splicing, we activated transcription of the meiotically
spliced spo6 and spn7 genes, either by placing them under the control
of an ectopic regulatable promoter or by overexpressing the tran-
scription factor Mei4, which activates spo6 and spn7 (ref. 27) and has
been implicated in the regulation of meiotic splicing28. The propor-
tion of spliced transcripts increased after activating transcription,
using either the ectopic or the native transcription factor (Fig. 4d;
Supplementary Fig. 7). We conclude that activation of transcription
itself is sufficient to promote splicing during meiosis, without the
specific need for the meiotic factor Mei4. This finding raises the
possibility that transcriptional and splicing efficiencies are mecha-
nistically linked. Taken together, our results reveal a surprising
genome-wide regulation of splicing, largely reflecting transcript
levels during proliferation or differentiation. These data point to a
global and condition-specific coupling between splicing efficiency
and transcription, which may help to optimize and streamline gene
expression programmes.

METHODS SUMMARY
Strains and experimental conditions are listed in Supplementary Table 1. cDNA

for sequencing and array hybridization was prepared using oligo(dT) or random

primers, respectively. For sequencing, fragment sizes of 120–170 bp were

attached to the FlowCell at an average concentration of 3 pM, amplified

isothermally, and sequenced using Solexa reversible-terminator chemistry on

the Illumina Genome Analyser. Sequence reads were mapped to the reference

genome using BLAT. Analyses of tiling-chip data were based on the
Bioconductor package ‘tilingArray’29.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
cDNA preparation for high-throughput sequencing. All cDNA samples for

Illumina were prepared by first treating ,1 mg of total RNA for 30 min with

amplification-grade RNase-free DNase (Invitrogen), according to the manufac-

turer’s protocols. Poly(A)-enriched RNA was then prepared using an oligo(dT)

selection kit (Oligotex Direct mRNA miniKit, Qiagen). The resulting RNA was

converted to double-stranded cDNA using a cDNA synthesis kit (Superscript

choice system for cDNA synthesis, Invitrogen), primed by an oligo(dT) primer.

RNA samples from the pooled meiotic time points were subjected to amplifica-

tion by in vitro transcription (IVT) after a poly(A)-enrichment step as described

above.

DNA libraries were prepared following the manufacturer’s instructions

(Illumina). DNA was sheared by nebulization, followed by simultaneous end-

repair and phosphorylation using T4 DNA polymerase, Klenow fragment of

DNA polymerase I and T4 PNK. DNA recovery was performed after each stage

using QIAquick PCR purification columns (Qiagen). These repaired fragments

were 39-adenylated using Klenow exonuclease-minus (Illumina) and were puri-

fied using a MinElute PCR purification column (Qiagen). Illumina adaptors

were ligated to the adenylated ends of the fragments and gel-purified on a 2%

TAE (Tris-acetate-EDTA)-agarose gel (Certified Low-Range Ultra Agarose,

Biorad), stained using ethidium bromide and visualized on a Dark Reader

(Clare Chemical). A range of fragment sizes (120–170 bp) was excised from

the gel and extracted using a QIAquick gel extraction kit. Seventeen rounds of

PCR amplification were performed using primers complementary to the pre-

viously ligated adaptors and compatible to oligonucleotides attached to the

FlowCell. DNA was recovered using a QIAquick PCR purification column.

DNA was subsequently diluted to a working concentration of 10 nM in TE

(Tris-EDTA) after quantification on a Nanodrop-1000 spectrophotometer.

Sequencing data processing and expression scores. FASTQ files of sequence

reads were converted into FASTA files, and were filtered to remove sequences

,15 bp after trimming the sequence from the position of the first N. All remain-

ing FASTA sequences were matched back to the S. pombe genome using BLAT

(tilesize 8, oneoff 1) in parallel on the Sanger Institute computer farm. All FASTA

reads were also matched back as above to a spliced genome with all known or

predicted intron sequences removed. The result files of matches to the spliced

and unspliced genomes were compiled into a complete and non-redundant set

used for subsequent analysis.

For Fig. 1a, expression scores for every genomic base pair position were

assigned on the basis of how many sequence reads covered each position. The

log2 of the score for each base pair position was then plotted using

R/Bioconductor. The numbers of sequence reads drop towards the 59-end of

long genes. To ensure that expression scores are not biased against long genes,

scores were determined first by taking the sum of the sequencing expression

scores for only 300 bp at the 39-end of each coding region, or for the entire length

if the coding region was ,300 bp, and then dividing by the corresponding length

used.

Expression-chip hybridization and processing. Total RNA was isolated as

described14, and 0.3mg RNA were labelled using the standard Affymetrix

Genechip eukaryotic hybridization protocols. Hybridizations were performed

on Affymetrix Yeast 2.0 Genechip arrays. Scanning was performed on a Genechip

Scanner 3000, and data extraction was carried out using Affymetrix GCOS 1.4

(Figs 1a and 4c).

Tiling-chip labelling, hybridization and normalization. Total RNA was

isolated as described14. Labelling and hybridization to the Affymetrix

GeneChip S. pombe Tiling 1.0FR arrays were performed as described5.

Affymetrix CEL files were normalized using the ‘normalizeByReference’ function

from the Bioconductor package ‘tilingArray’ (http://www.bioconductor.org)29.

In this procedure, the individual hybridization behaviour of every probe was

corrected using the signal of three genomic DNA hybridizations. Genomic DNA

was extracted, labelled and hybridized to the Affymetrix GeneChip S. pombe

Tiling 1.0FR arrays as described5. A second normalization step was applied using

the signals of intergenic probes as a reference. Finally, between-array normali-

zation and variance-stabilizing transformation were applied using the

Bioconductor package ‘vsn’.

Pol II ChIP–chip analysis. Chromatin immunoprecipition (ChIP) was per-

formed as described12 using an antibody specific for the Pol II C-terminal

domain (4H8, Abcam). The immunoprecipitated material and input control

were amplified in two steps as described31. During the second step, dUTPs were

added to the PCR mix for subsequent fragmentation of the products.

Fragmentation and labelling of the amplified products were performed using

the GeneChip WT double-stranded DNA terminal labelling kit (Affymetrix).

The duplicated immunoprecipitated samples and corresponding input material

were hybridized on four separate Affymetrix GeneChip S. pombe Tiling 1.0FR

arrays. The log2 signals of the probes on the input arrays were subtracted from

the log2 signals of the Pol II arrays. The two normalized Pol II data sets were

averaged and smoothed using a five-probe moving average. Average gene pro-

files were created using R and Bioconductor.

Data visualization along genomic coordinates. The tiling-chip data were visua-

lized using the ‘plotAlongChrom’ function5 (Figs 2b and 3d). The sequence data

were visualized using an in-house R script (Figs 2a and 3a). Normalized sequence

scores were generated by dividing the sequencing expression score for a given

base pair position by the sum of the expression scores for this base pair position

in each condition sequenced.

Novel transcript analysis using tiling-chip data. The normalized data were

smoothed using a five-probe moving average. Signal breakpoints in the probe

signals along genomic coordinates were then determined using a dynamic pro-

gramming algorithm for finding a globally optimal fit of a piecewise constant

expression profile along genomic coordinates29. Segments $100 bp and a

median probe signal higher than the 75th percentile of the chip and outside of

any annotation were selected for visual analysis. To screen for anti-sense tran-

scripts, similar criteria were applied except that the segments had to overlap

annotated genes on the opposite strand (Supplementary Table 3).

Novel transcript analysis using sequence data. Stretches of contiguous express-

ion in intergenic regions were identified after removing all UTRs (see below)

from the intergenic search space. Novel transcribed regions were required to

have a length of $70 bp and an average sequence-expression score of $5 reads

per bp. All predicted novel transcripts were then visually validated to remove

inaccurate UTRs before a final manual curation (Supplementary Table 3).

Expression profiling analysis of the novel transcripts. Expression profiles of

the novel transcribed regions determined by sequencing and tiling chips were

visually inspected from their expression across the 12 biological conditions

tested (Supplementary Table 3). For the clustering analysis of Fig. 2c, a

Wilcoxon rank sum test was used to determine if the probe signals in each

new transcribed region were significantly greater than the signals of a reference

set containing probes located outside of any annotated regions in any condition.

An expression score was defined as –log2 of the P-value of this test.

UTR determination using tiling-chip data. CEL files were processed as for novel

transcripts. The UTR boundaries were the closest breakpoint to the start of an

annotated gene, where the median of the four probes immediately upstream of

the breakpoint was lower than the one of the four probes downstream of the

breakpoint. If no breakpoint could be defined that way and a breakpoint was

present ,50 bases inside the coding region, the UTR was set to 1. UTRs called

inside neighbouring genes or sharing UTR boundaries with neighbouring genes

were discarded. UTRs .1,000 nucleotides were discarded, because they were

highly enriched in wrong calls based on visual inspection of the data

(Supplementary Table 4)

UTR determination using sequence data. UTR lengths were determined by

screening for a break in the transcribed region around genes, denoted by posi-

tions with sequence scores of 0 or 1, starting from either end of every gene. If a

score of 0 was not found in the section between the start and/or end of the

neighbouring regions, 1 was used as a cutoff. If no break was found using either

cutoff, the UTR was denoted as undetermined (Supplementary Table 4).

Alternate 59- and 39-end analysis using tiling-chip data. Genes with UTRs

containing several breakpoints caused by ‘steps’ in the decreasing probe signals

moving away from the gene boundaries were automatically selected from 12

biological conditions. A Wilcoxon rank sum test was then used to determine if

the probe signals in each region were significantly greater than the signals of a

reference set containing probes located outside of any annotated regions in any

condition. A score was defined as –log2 of the P-value of this test. Candidate

regions with scores .10 in $12 conditions were selected for visual inspection

(Supplementary Table 6).

Splicing analysis using sequence data. The initial BLAT results generated a set

of sequence reads with gaps in the reference sequence (that is, representing

potential spliced reads). Spurious matches within this data set caused by

poly(A/T) tracts splitting reads between two distant regions in the genome were

filtered out using a limit of #1 kb for the maximum sequence spanned by trans-

reads. The remaining trans-reads were compared to all known and predicted

introns for intron validation. Trans-reads that did not span any known introns

were clustered on the basis of their splice junctions, where putative junctions had

to overlap 61 bp to belong to the same cluster. Clusters were ranked by the

number of novel trans-reads in each cluster and a conservative set of 33,466

reads with $6 reads per cluster (defining 485 potential splice sites) were manu-

ally curated. ‘False-positive’ trans-read clusters that did not seem to reflect

splicing were mostly within complex repeated regions, and some may reflect

errors in the original genome sequence.

Regulated splicing was determined by calculating a ratio of reads that span

exon–exon junctions (EE) to those that span the two corresponding exon–intron
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junctions (2EI) (Supplementary Table 7). The latter were divided by two to
normalize for relative frequency. To obtain a conservative estimate of regulated

splicing, the EE:EI ratio for one condition had to be $5-times greater than the

EE:EI ratio of another stage. Junctions covered by ,2 sequence reads in any

condition were not considered. Genes that were $5-times higher spliced in any

meiotic-differentiation stage (M1 to M5) compared to rapidly proliferating cells

as well as those that were $5-times higher spliced in rapidly proliferating cells

compared to $1 meiotic-differentiation stage were determined (Fig. 4a).

Additional analysis was also performed using absolute read numbers, in cases

where ratios could not be calculated because of 0 values. In these cases, to obtain

a conservative estimate of regulated splicing, where EE 5 0 in rapidly prolif-

erating cells, the EE in $1 meiotic-differentiation stage was required to be .6.

With EE 5 1 or 2 but EI 5 0 in rapidly proliferating cells, the EE in $1 meiotic-

differentiation stage was required to be 8 or 9, respectively. With EE $3 in

rapidly proliferating cells, the EE in $1 meiotic-differentiation stage was

required to be $5-times higher than in rapidly proliferating cells, or $20-times

higher when identifying introns spliced more efficiently in rapidly proliferating

cells to account for the greater sequence depth in this condition (Supplementary

Table 8).
Measurement of splicing efficiency by quantitative RT–PCR. To test the rela-

tionship between transcription rate and splicing efficiency (Fig. 4d and

Supplementary Fig. 7), the uracil-inducible urg1 promoter was integrated

upstream of spo6 and spn7 (ref. 30). Cells were grown in exponential phase for

16 h in minimal medium (MM) in the absence of uracil. A cell sample was then

harvested, and uracil was added to the remaining culture at a final concentration

of 2 mg ml21. Further cell samples were harvested 15 min and 60 min after uracil

addition.

spo6 and spn7 are putative targets of Mei4 and were induced in a strain over-

expressing Mei4 under the control of the nmt1 promoter27. Such a strain

(Supplementary Table 1) was grown in the presence of thiamine to early expo-

nential phase. A cell sample was then harvested before the cells were diluted and

was grown for 18 h in the absence of thiamine.

Primers were designed inside the exons 1 and 2 of spo6 and across the exon

1/intron 1 and exon 2/intron 2 junctions. Similarly, primers were designed inside

exons 1 and 4 of spn7 and across the exon1/intron1 and intron 3/exon 4 junc-

tions. RNA was extracted and qRT–PCR performed as described30. The data were

normalized to the signal of the fba1 control gene. No signals above background
levels were detected in control runs in the absence of reverse transcriptase.

Curation methods. Novel transcribed regions were converted to gff3 format and

visualized in the context of the existing annotation using Artemis software and

methods described previously13. The corresponding sequence plots were exam-

ined and discrete features designated ‘non-coding RNAs’. Manual inspection of

the strand-specific tiling-chip data identified several ‘antisense’ transcripts.

‘Non-coding RNAs’ were inspected for the presence of methionine-containing

ORFs .60 amino acids, identifying three protein-coding genes. Less discrete

features, which may correspond to transcriptional noise, occurring mainly in

low-complexity regions were designated ‘miscellaneous features’. Some tran-

scribed features were clearly related to their proximal genes and curated as 59

and 39 UTRs (occasionally intron-containing).

Sequence trans-reads obtained from proliferating cells validated 3,796 of the

4,811 known and predicted introns, and trans-reads only obtained from meiotic

cells validated an additional 666 introns (Supplementary Table 7). The remain-

ing 349 introns either were in poorly expressed genes with insufficient sequence

reads, or were not spliced under any of the conditions tested. Among the latter,

manual inspection coupled with homology searches and intron branch, acceptor
and donor consensus-sequence data allowed refinement of 25 protein-coding

gene structures, and deletion of 6 unsupported intron-containing genes. A num-

ber of the introns confirmed by trans-read sequences were not previously anno-

tated in the database. These ‘false negative’ introns were mapped onto the

genomic sequence and used to identify 22 new genes and revise a further ,60

gene structures.

All these alterations have been incorporated in S. pombe gene database (http://

www.genedb.org/genedb/pombe/). The new transcribed regions are listed in

Supplementary Table 3, and the corrected gene structures are listed at http://

www.genedb.org/genedb/pombe/coordChanges.jsp.

31. Bernstein, B. E., Humphrey, E. L., Liu, C. L. & Schreiber, S. L. The use of chromatin
immunoprecipitation assays in genome-wide analyses of histone modifications.
Methods Enzymol. 376, 349–360 (2004).
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