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Abstract

Growth of fission yeast at the ends of its cylindrical cells switches from a monopolar to a bipolar mode, before it ceases during

mitosis and cell division. Here we assume that these growth modes correspond to three stable states of an underlying regulatory

circuit, which is a relatively simple and to a large degree autonomous subsystem of an otherwise complex cellular control system. We

develop a switch-like logical circuit based on three elements defined as binary variables. Effects of circuit variables on each other are

expressed in terms of logical operations. We analyse this circuit for its behavior (‘‘phenotypes’’) after removing single or multiple

operations (‘‘mutants’’). Known fission yeast polarity mutants such as those defective in the switch to bipolar growth can be

classified based on these predicted ‘phenotypes’. Differences in growth patterns between daughter cells in different bipolar growth

mutants are also predicted by the circuit model. The model presented here should provide a useful framework to guide future

experiments into mechanisms of cellular polarity. This paper illustrates the usefulness of simple logical circuits to describe and

dissect features of complex regulatory processes such as the fission yeast growth patterns in both wild type and mutant cells.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Cells often operate by switching from one stable
steady state to another to exert various biological
functions. It is usually difficult to unravel all details of
the underlying regulatory mechanisms, because they are
confounded by complex interactions between many
different proteins. Models that emphasize essential
features of biological control processes can therefore
provide a valuable basis to identify important informa-
tion and to decide on critical follow-up experiments to
test and refine the models. To develop a model, it helps
to choose a system with a sufficient amount of
e front matter r 2005 Elsevier Ltd. All rights reserved.
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accumulated data and to concentrate on a cellular
process that is relatively isolated from other processes.
The regulation of fission yeast growth modes satisfies
these criteria.
The fission yeast Schizosaccharomyces pombe is a

relatively simple unicellular model organism, which
grows at the ends of its cylindrically shaped cells. Newly
born cells generated by cell division initiate growth in a
monopolar fashion, growing at the cell end that was
already present in the mother cell. After DNA replica-
tion, growth is induced also at the new cell end created
by cell division, leading to a bipolar growth mode
(Mitchison and Nurse, 1985). During mitosis, cells
cease growth at their ends, and the growth machinery
engages in the formation of the division septum at the
cell center (Gould and Simanis, 1997). Thus, fission
yeast cells exhibit three well-defined growth modes
during the cell cycle, switching from one to the next in
a defined order: (1) monopolar growth, (2) bipolar
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Fig. 1. Schematic representation of the different fission yeast growth

modes. Growing regions are indicated by black areas. The values of the

binary variables x, y, and z for the three circuit elements that define the

corresponding logical circuit are shown for each growth mode. See text

for details.
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growth, (3) no growth at cell ends, (4) monopolar
growth, etc. (Fig. 1).
Polarized growth correlates with the localization of

actin patches to the growth sites at cell ends (Marks and
Hyams, 1985). Polarized growth may result from an
interplay between cell end markers and a self-organiz-
ing, microtubule-mediated delivery of growth determi-
nants to the cell ends (reviewed by Snell and Nurse,
1993; Bähler and Peter, 2000; Hayles and Nurse, 2001;
Chang and Peter, 2003; Chang and Verde, 2004). Several
mutants show modified growth behaviors such as
defects in the switch to bipolar growth. These mutants
differ in various characteristics, including severity of
defects and specific growth patterns. The growth
behavior and mutant phenotypes of fission yeast
indicate that cell polarity is under control of a
regulatory circuit. The viability of many growth mutants
further suggests that this circuit is a relatively simple
subsystem of a more complex cellular control system.
We hypothesize that the different growth modes of
fission yeast represent different stable steady states of
the underlying regulatory network. Due to the multitude
of stable states, such a network must involve positive
feedback loops (Thomas, 1998; Soulé, 2003).
In this paper, we develop and discuss a possible

regulatory circuit that is consistent with available data
on the fission yeast growth patterns. First, we introduce
a logical circuit model together with a description of the
requirements for the logical analysis approach. We then
compare ‘mutants’ of the model with real fission yeast
mutants, before discussing the benefits of the logical
circuit analysis for gaining deeper insight into possible
regulatory mechanisms of cellular growth patterns.
2. Theoretical background: A switch-like logical circuit

model for fission yeast growth modes

Logical circuits (boolean networks) provide a con-
venient method to address the dynamics of modules
regulating biological systems (Thomas and d’Ari, 1990;
Huang, 1999). A logical circuit description of a given
cellular system can also be exploited to predict its
behavior under a variety of perturbing conditions. In
this section, we first give a short account on key aspects
of the logical circuits approach, then derive a suitable
irreducible logical circuit, and finally perform its
‘mutational’ analysis.

2.1. A brief introduction into logical circuits

The relevant fission yeast growth modes are (1)
monopolar growth, (2) bipolar growth and (3) no-
growth at the cell ends (Fig. 1). We propose a model in
which these growth modes correspond to three stable
steady states of an underlying regulatory circuit. This
circuit is approximated by a logical circuit that involves
three circuit variables. We assume that different growth
modes can be represented by differently activated circuit
variables. The first tasks then are to define the relevant
binary representation for these variables and to assign
their values (0 or 1) for each growth mode. Growth at
one or both cell ends is represented in the circuit by the
binary variable (z) that takes the value 1 when end
growth is ‘‘on’’ and the value 0 when it is ‘‘off’’. The
other two variables reflect growth regulatory mechan-
isms leading to either monopolar or bipolar growth
modes. They are represented by the binary variables y
and x, respectively, which are defined to be 1 when the
corresponding growth mode is turned ‘‘on’’ and to be 0
when it is turned ‘‘off’’. Since these two growth modes
exclude each other, it follows that when variable y is 1,
variable x is 0, and when variable x is 1, variable y is 0
(Fig. 1).
The states of a logical circuit based on the three circuit

variables x, y and z are conveniently described by 23 ¼ 8
vectors whose components are the binary values of these
variables (Table 1, column Vectors). According to the
above assignments, the three stable states of the logical
circuit that correspond to the three growth modes are
ðx; y; zÞ ¼ ð0; 1; 1Þ for monopolar growth, (1, 0, 1) for
bipolar growth, and (0, 0, 0) for no-growth at the cell
ends (Fig. 1). In general, the stable states of a regulatory
circuit are the result of the operations exerted by system
variables on each other. In logical circuits these
operations define logical functions X, Y and Z that
attain the values 0 or 1, dependent on the current values
of the circuit variables x, y and z. The state is stable
when the logical functions attain values of the vector
that defines this state. The state is not stable when at
least one logical function attains a different value. We
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Table 1

State tables of different logical circuits*

Vectors Circuit A Circuit B Circuit C Circuit D Circuit E Circuit F

x y z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 0

0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1

0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1

1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1

1 0 1 1 0 1 1 1 1 1 0 0 1 0 1 1 1 0 1 1 1

1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1

1 1 1 0 0 1 0 1 1 0 0 1 0 0 1 0 1 1 1 1 1

*Stable states are represented by bold numbers. The first column (Vectors) shows the 23 ¼ 8 states of the logical circuit with three variables (x, y, z).

Circuit A shows the vectors that are obtained by application of the logical functions defined by Eqs. (7)–(9) on the vectors in the Vectors column (see

text for details). The next four columns show the corresponding vectors for the ‘mutants’ of circuit A defined by Eqs. (10)–(12) (B), Eqs. (13)–(15) (C),

Eqs. (16)–(18) (D), and Eqs. (19)–(21) (E). Circuit F represents vectors obtained by logical functions X ¼ x, Y ¼ z, and Z ¼ x þ y.

zy

yx

(A)

(B)

Fig. 2. Graphical representation of logical circuits. Linkages that end

with an arrow denote positive (activating) effects, whereas linkages

that end with a cross bar denote negative (repressing) effects. (A)

Logical circuit described by Eqs. (1) and (2) (and if y is replaced by x,

by Eqs. (3) and (4)). (B) Logical circuit described by Eqs. (5) and (6).
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want to identify a logical circuit defined by a set of
logical functions that give rise to the three chosen
stable states while the remaining five states are unstable.
Table 1 shows an example of such a logical circuit
(circuit A), which will be defined and discussed below.
Table 1 also shows other circuits (B to F) that will be
discussed and exhibit different sets of stable states. In
general, a combination of the vector column together
with any of the circuit columns in Table 1 forms the
state table representation of the respective logical
circuit, revealing the stable states (Thomas and d’Ari,
1990; Thellier et al., 2004).
Because of the multitude of possible unstable states,

there are numerous possible logical circuits with three
variables that give rise to the three selected stable states.
Logical operations applied on a given vector can
produce 7 (23–1) vectors that are different, meaning
that we can define 7 unstable states using different
logical functions. Consequently, with 5 unstable vectors,
there are 75 ¼ 16 807 different sets of logical functions
X, Y and Z (i.e. different logical circuits that exhibit the
selected 3 stable states). Circuit A represents just one of
them. These 75 circuits differ in the number of
operations by which circuit variables exert effects on
each other, and thus in the circuit complexity. Some of
these circuits show redundancy, because certain opera-
tions can be removed without changing the circuit
outcome. Through consecutive removal of redundant
operations, different irreducible circuits can be reached,
in which all remaining operations are essential.

2.2. An irreducible switch-like logical circuit

We want to find the logical circuit that gives rise to the
chosen three stable states and that is consistent with
experimental data. We aim at developing a logical
circuit that is as simple as possible and then compare its
predictions with available data. The next step would
then be to introduce additional operations and variables
if required to remove discrepancies between predictions
of the model and experimental data. The proposed
approach is corroborated by the recent study of
Azevedo et al. (2005), which indicates that evolution
can drive regulatory networks towards the simplest
solution.
We introduce a simple irreducible logical circuit that

has the character of a switch, consistent with the chosen
stable states. The switch-like behavior of the circuit is
evident when considering stable states for pairs of the
chosen variables with a constant value for the third
variable. For instance, a switch-like behavior can be
ascribed to the variables y and z when x ¼ 0. In this
reduced circuit, the switch from (y, z) ¼ (0, 0) to (y, z) ¼
(1, 1) represents the transition from no-growth to
monopolar growth. The variables y and z in this switch
are either both ‘‘on’’ or both ‘‘off’’, which means that
they act on each other in a positive manner. The
corresponding logical circuit can be represented by a
graph in which the circuit operations are represented by
linkages (Fig. 2A). The corresponding logical functions



ARTICLE IN PRESS

yx z

yx z

(A)

(B)

Fig. 3. Graphical representation of two possible operations of a

logical SUM, in which linkages end anywhere in the middle of a

signaling pathway represented by the last operation of the logical

SUM. (A) Logical SUM X ¼ z ȳ (cf. Eq. (7)). The operation ȳ exerts

its negative effect on variable x only if variable z is ‘‘on’’. If z is ‘‘off’’

or removed, the operation ȳ is inactive. (B) Logical SUM X ¼ ȳ z (a

corresponding situation is applied in Eq. (8)). The operation z exerts its

positive effect on variable x only if variable y is ‘‘off’’. If y is ‘‘on’’, the

operation z is inactive, but if operation ȳ is deleted, operation z is

active. For the meaning of arrows and bars see Fig. 2.
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can be formalized as

Y ¼ z, (1)

Z ¼ y. (2)

The logical function defined by Eq. (1) shows that the
effect of variable z on the variable y is that y attains the
current value of z. The logical function defined by Eq.
(2) shows that z attains the current value of y. The effect
of a variable on another variable can either be direct or
via a chain of intermediate steps. To distinguish a
variable from its operation on another variable, we write
operations on right sides of logical functions in italic

letters.
With y ¼ 0, an analogous switch exhibiting mutual

activating action between the variables x and z is
expressed as

X ¼ z, (3)

Z ¼ x. (4)

A third standard switch is obtained with z ¼ 1, where
we have a switch from (x, y) ¼ (0, 1) to (x, y) ¼ (1, 0).
The variables x and y act on each other in an inhibitory
manner (Fig. 2B), which in terms of logical equations
reads

X ¼ ȳ, (5)

Y ¼ x̄. (6)

The overbar in ȳ and x̄ denotes the NOT logical
operations, meaning in Eq. (5) that X ¼ 1 if y ¼ 0 and
X ¼ 0 if y ¼ 1, and in Eq. (6) that Y ¼ 1 if x ¼ 0 and
Y ¼ 0 if x ¼ 1.
The complete circuit for all three variables x, y and z,

constructed as the simplest possible generalization of
Eqs. (1)–(6), can be expressed by the following logical
functions:

A : X ¼ z ȳ, (7)

Y ¼ x̄ z, (8)

Z ¼ x þ y. (9)

These logical functions take into account that for the
monopolar or bipolar growth modes to be ‘‘on’’, the
growth variable z must be ‘‘on’’, and at the same time
the alternative growth mode must be ‘‘off’’. This
requirement is expressed by the logical SUMs repre-
sented by products of the respective operators (Eqs. (7)
and (8)). Growth (z) is ‘‘on’’ if either the monopolar or
bipolar growth mode is ‘‘on’’ as represented by the
summation in Eq. (9) corresponding to the logical OR
operation.
Note that logical operations given in Eqs. (7) and (8),

which are described by logical SUMs, can be realized by
different linkage connections. This is important, because
in the cellular system each linkage may in molecular
terms represent a ‘signaling pathway’ composed of a
complex chain or network of chemical reactions invol-
ving numerous proteins. It is possible that one of the
variables in a logical SUM operates on an intermediate
link in the pathway rather than directly on the target
variable. Thus, the logical SUM given in Eq. (7) can be
realized in two ways: (1) x is inhibited by y only if z acts
in a positive manner on one of the links of the
corresponding pathway (Fig. 3A); or 2) z acts in a
positive manner on x only if an intermediate link in the
pathway is not inhibited by y (Fig. 3B). The same logical
SUM can thus give rise to two different linkage patterns.
To avoid this uncertainty, we will consider the order of
operations in logical SUMs. By definition, the pathway
corresponding to the right-hand operation in a logical
SUM (ȳ in Eq. (7)) ends on the target variable, while the
left-hand operation (z in Eq. (7)) acts on one of the
intermediate links of this pathway. According to this
definition, the logical SUM in Eq. (7) is represented by
the linkage pattern shown in Fig. 3A, and the logical
SUM that appears in Eq. (8) can be represented by a
linkage pattern analogous to the one in Fig. 3B (see
Discussion for choice of linkage patterns).
Fig. 4A illustrates the logical circuit defined by Eqs.

(7)–(9) (circuit A). Each linkage in the graph represents
an individual operation that appears in one of the
logical functions X, Y and Z. The state table representa-
tion of the results of logical functions defined by Eqs.
(7)–(9) is given in Table 1, circuit A. In general,
graphical representations help to visualize the circuit
linkages. On the other hand, as we shall see below, the
state table representations are convenient for the
determination of stable states when new circuits are
obtained due to circuit ‘mutations’ (Thomas and d’Ari,
1990).
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Fig. 4. Graphical representation of logical circuits defined by Eqs.

(7)–(9) (A), 10–12 (B), 13–15 (C), 16–18 (D), 19–21 (E), and in the

footnote of Table 1 (F). The deleted linkages are indicated by

dashed lines and are also crossed. For the meaning of arrows and

bars see Fig. 2.
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2.3. Circuit A ‘‘mutants’’

‘‘Mutants’’ of circuit A can be modeled as deletions of
at least one circuit linkage. ‘‘Mutants’’ can be repre-
sented graphically by removing the deleted linkages
from the graph in Fig. 4A, or algebraically by
correspondingly modified logical equations. Graphics
of the ‘‘mutants’’ examined are shown in Fig. 4B–E;
these ‘‘mutants’’ are also represented by their state
tables in Table 1, circuits B to E, and the corresponding
sets of logical equations are given below:

B : X ¼ z ȳ, (10)

Y ¼ z, (11)

Z ¼ x þ y, (12)

C : X ¼ z ȳ, (13)

Y ¼ x̄ z, (14)

Z ¼ y, (15)

D : X ¼ z ȳ, (16)

Y ¼ x̄ z, (17)

Z ¼ x, (18)

E : X ¼ z ȳ, (19)

Y ¼ z, (20)

Z ¼ y. (21)
3. A logical circuit analysis of fission yeast cell polarity

mutants

To analyse the logical circuit approach, we compare
the ‘‘mutational’’ behavior of circuit A (Eqs. (7)–(9);
Fig. 4A; Table 1) with known phenotypes of real cell
polarity mutants in fission yeast. The goal of this
analysis is to reveal the extent to which this circuit can
predict known mutant classes. We also try to assign
different polarity proteins to circuit variables and
linkages.
Several ‘‘mutants’’ of circuit A fail to switch to

bipolar growth, with no-growth and monopolar growth
as the only stable states. Simple examples of such single
‘mutants’ are defined by the circuits B and C (Figs. 4B
and C; Table 1). Circuit B is obtained by the removal of
operation x̄ in Eq. (8). In the absence of this operation,
the monopolar growth cannot be suppressed by the
variable x, and bipolar growth is not induced. The
behavior of circuit C is different, since the removed
operation x in Eq. (9) represents the linkage through
which x acts on the growth variable z. This ‘mutant’
can thus be interpreted as having a failure in the
activation of growth. The ‘‘mutant’’ defined by circuit E
(Fig. 4E; Table 1) includes both these features,
i.e. failure in suppressing the monopolar growth as
well as failure of variable x to induce growth. A
straightforward further example of a bipolar growth
‘‘mutant’’ is obtained by the knock-out of variable x. In
this case Eq. (7) becomes irrelevant and Eqs. (8) and (9)
reduce into the simple positive feedback switch circuit
described by Eqs. (1) and (2) (Fig. 2A). Because the
described ‘‘mutants’’ represent different modifications of
circuit A, it is expected that they exhibit different
phenotypes.
Can the ‘‘mutants’’ of circuit A predict the properties

of various fission yeast bipolar growth mutants? The
pom1 mutant shows expected properties for the removal
of variable x. Induction of growth at the new cell end is
correlated with up-regulation of Pom1p kinase activity,
and cells can grow only in a monopolar mode in the
absence of Pom1p (Bähler and Pringle, 1998; Bähler and
Nurse, 2001). If Pom1p corresponds to x, it would be
involved both in operation x̄ in Eq. (8) and in operation
x in Eq. (9). The tea1 mutant exhibits a similar
phenotype as the pom1 mutant (Arellano et al., 2002;
Chang and Verde, 2004). Tea1p could therefore also be
involved in these two linkages, and the tea1 mutant
could correspond to circuit E. In the absence of Tea1p,
two functions of Pom1p described by these linkages
would thus be abolished but its other functions (not
explicitly represented by the present model) could
remain intact. This would be consistent with the
observation that the tea1 mutant shows less severe
bipolar growth defects than the pom1 mutant (Niccoli
et al., 2003).
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Fig. 5. Schematic representation of different growth behaviors in

daughter cells from the various bipolar growth mutant classes as

described in the main text. Growing regions are indicated as black

areas.

J. Bähler, S. Svetina / Journal of Theoretical Biology 237 (2005) 210–218 215
Tea1p acts upstream of Pom1p in that it is required
for Pom1p localization (Bähler and Pringle, 1998;
Bähler and Nurse, 2001; Behrens and Nurse, 2002;
Niccoli et al., 2003). This relationship between the two
proteins could be assigned to the signaling pathway
represented in the model by operation x in Eq. (9).
According to the previous assumption, both Pom1p and
Tea1p are also involved in the pathway represented by
operation x̄ in Eq. (8). In the latter pathway, Pom1p
may act upstream of Tea1p. Tea1p is phosphorylated by
Orb2p (Kim et al., 2003); the orb2 mutant is also a
bipolar growth mutant, and Orb2p therefore seems to
act upstream of Tea1p in this pathway. Because an orb2

mutant does not affect Pom1p kinase activity (Bähler
and Nurse, 2001), Pom1p may act upstream of Orb2p
and of Tea1p in this pathway. The specific defects in a
pathway involving Pom1p, Orb2p, and Tea1p can be
classified as circuit B-type mutations. Besides Orb2p,
another possible candidate for this pathway is Tea3p,
the major role of which is to efficiently activate growth
at the second cell end (Arellano et al., 2002). Its position
in the pathway might be downstream of Pom1p, and
Tea3p could abolish some of the remaining Pom1p
functions in the tea1 mutant, thus leading to similar
phenotypes in the pom1 single mutant and the tea1 tea3

double mutant (Niccoli et al., 2003).
Among the mutants with defects in the establishment

of bipolar growth, the bud6 mutant could be assigned to
circuit C-type ‘mutants’, because of the role of Tea1p in
its localization (Glynn et al., 2001). The ssp1 mutant
could also belong to this category, because of the role of
Ssp1p in actin relocalization (Rupeš et al., 1999), and
because it acts downstream of Pom1p kinase activity
(Bähler and Nurse, 2001). We conclude that the various
fission yeast mutants which fail to induce bipolar growth
can be accounted for by the ‘‘mutational’’ behavior of
circuit A in a satisfactory manner.
In some of the described mutants, the growth pattern

in daughter cells differs from the wild type. In pom1,
tea1, and tea3 mutants, the daughter that inherits the
growing end will initiate growth at this end (Fig. 5A, left
cell), whereas the daughter cell that inherits the non-
growing end will initiate growth at its new end (Fig. 5A,
right cell) (Glynn et al., 2001; Niccoli et al., 2003). This
could reflect a failure of these mutants to mark the non-
growing cell end. The daughter cell that did not inherit
any previously growing cell end then as a ‘‘default’’
grows at its new end where the growth machinery is
located from the previous cell division. The circuit B-
type mutants may exhibit this phenotype as reflected by
orb2 mutants (Kim et al., 2003). Sawin et al. (1999)
actually found that the orb2 mutant uncovers a failure
of one of the cell ends to maintain the molecular
properties that identify an end. On the other hand, bud6

mutants grow at the old ends in both daughter cells
(Glynn et al., 2001), even if one of them did not grow
during the previous cell cycle (Fig. 5B). Such a behavior
supports the assignment of bud6 as a C-type mutant and
suggests Bud6p to be involved in the activation of
growth. These examples demonstrate that different
growth behaviors of daughter cells are also consistent
with different defects in the underlying regulatory circuit
A.
Another ‘‘mutant’’ of interest is the knock-out of the

complete logical operation in Eq. (8), possibly as a result
of the failure in the linkage modeled by operation z. In
this case, the value of variable y is not under the control
of the circuit and may thus depend on other conditions.
If y ¼ 0, the stable states are no-growth and bipolar
growth, whereas with y ¼ 1, they are no-growth and
monopolar growth. The for3 mutant may correspond to
this situation, because its daughter cells have different
fates: while one daughter cell grows in a monopolar
fashion and has a normal shape (Fig. 5C, left cell), the
other one grows in a bipolar fashion from the beginning
of the cell cycle and has a more rounded shape (Fig. 5C,
right cell) (Feierbach and Chang, 2001). This behavior
suggests that in the daughter cell retaining the old end,
conditions allow for y to be 1, while in the daughter cell
without the old end, the value of y remains 0. This latter
property is consistent with y being involved in the
localized marking of the appropriate cell end, with the
consequence that in the absence of y the growth
machinery is distributed over a wider region and cells
exhibit more oval shapes (Feierbach and Chang, 2001).
It should be pointed out that the present analysis allows
for the existence of the for3 mutant phenotype, but it
does not unravel its molecular basis.
The ‘‘deletion’’ of operation y in Eq. (9) leads to

circuit D (Eqs. (16)–(18); Fig. 4D), in which the two
stable states are no-growth and bipolar growth. The
cdc11 mutant that fails to undergo cell division is
switching between these two growth modes. This reflects
the coordination between cell cycle and growth regula-
tion, the study of which is beyond the scope of this
paper.
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4. Discussion

To understand cellular functions, it is necessary to
identify its molecular parts, as well as to recognize how
they cooperate to form a highly regulated system. In this
paper, aspects of cell regulation are treated on the basis
of logical circuits. We have developed a regulatory
circuit that is consistent with the available knowledge
about fission yeast growth modes. Based on this
analysis, we can also draw conclusions on general
aspects of the usage of logical circuits. The discussion
will start with the latter, before we point out specific
insights from the logical circuit model to better under-
stand the regulation and unknown properties of fission
yeast growth patterns.
Logical circuits provide an adequate phenomenologi-

cal description of biological regulatory systems invol-
ving feedback loops (Thomas and d’Ari, 1990; Huang,
1999). The ‘‘naı̈ve’’ formulation of the asymmetrical
logical method (Thomas and d’Ari, 1990) that we have
adopted represents a convenient approach to analyse
multiple, stable steady states in these systems. More-
over, the potential of the logical circuits approach also
lies in possible generalizations such as multilevel logics
where it is taken into account that variables which are
involved in different pathways may become active
(‘‘on’’) in these pathways at different concentration
thresholds (Snoussi and Thomas, 1993; Thomas and
Kaufman, 2001).
The search for logical circuits underlying cellular

regulatory processes is compromised by the fact that
often different circuits explain a given biological reality
equally well. Not only are there tens of thousands of
different logical circuits that give rise to the same
number or even to the same set of stable states (i.e. to
the same phenotype), but most of these circuits can also
be realized through several different linkage patterns
(Fig. 3). We have noted that circuits can be grouped into
classes with similar characteristics. The circuit analysis
can thus be simplified by only analysing properties of
representative circuits of different classes. For practical
reasons, it also seemed sensible to choose irreducible
circuits as representatives of a class, i.e. circuits that
involve the least number of linkages relative to other
circuits of a given class. We focused on a logical circuit
that can be phenomenologically considered as a good
initial guess for growth regulation and then analysed its
predictions in light of diagnostic experimental informa-
tion. As an initial approximation, we chose the
irreducible switch-like logical circuit A (Fig. 4A; Table
1) and showed that it represents basic features of the real
fission yeast growth patterns. Our model on stable states
assumes that monopolar and bipolar growths are
triggered by two separate induction processes. Theore-
tical ‘‘mutants’’ of circuit A were then obtained by
‘‘deletion’’ of different circuit linkages. Notably, several
defects in bipolar growth can thus be predicted.
Different ‘‘mutants’’ of circuit A also allow for the
existence of different growth patterns observed in
daughter cells of the various known mutants (Fig. 5).
On the other hand, we did not try to explain the cause of
the switch from one steady state to the other. This would
require to take into account either external logical
variables (Thellier et al., 2004) or to consider also the
dynamical aspects of the circuit variables (Thomas and
d’Ari, 1990).
Circuit A could have been designed in different ways.

There are for instance four options for the linkage
connections that correspond to the logical SUMs in Eqs.
(7) and (8). In both equations, we had a choice between
the linkage connections shown in Fig. 3. For Eq. (7), we
chose the first option (Fig. 3A), because the alternative
case would lead to many predicted ‘‘mutants’’ failing to
grow in a monopolar way, which does not reflect the real
situation. For Eq. (8), however, the alternative option
was more attractive (Fig. 3B), because it increased the
variety of possible relevant growth ‘‘mutants’’. The
advantage of circuit A can be further illustrated by
comparison with another irreducible circuit F (Table 1;
Fig. 4F). Circuit F has also three stable states and thus
can exhibit similar growth phenotypes as circuit A, but
its characteristics are not switch-like: the variables x and
y cooperate for the induction of the bipolar growth
mode in a negative way in circuit A, but in a positive
way in circuit F. Circuit F cannot be considered a good
approximation for fission yeast growth regulation,
because the variety of its possible ‘‘mutants’’ is lower
and less representative of biological reality. For the
same reason, we did not consider circuits that involve
only two elements.
Different classes of bipolar growth ‘‘mutants’’ pre-

dicted by circuit A can be distinguished with respect to
their severity. The most severe is the mutant obtained by
the knock-out of the system element represented by the
variable x. Less severe are mutants that arise due to the
loss of specific roles of this element. The ‘‘mutant’’
deficient in bipolar growth that arises due to the loss of
operation x̄ in Eq. (8) (circuit B) corresponds to a defect
in the inhibition of the monopolar growth mode that is
normally mediated by activation of the molecule
represented by x. The loss of operation x in Eq. (9)
(circuit C) which is involved in the activation of growth
is less severe than the loss of operation x̄ in Eq. (8): in
the latter case, operation x becomes irrelevant, whereas
the loss of operation x has no effect on operation x̄. This
is consistent with the observations: assuming that the
pom1 mutant corresponds to a deletion of variable x, the
tea1 mutant to circuit E, the tea3 mutant to circuit B,
and the bud6 mutant to circuit C, it is possible to predict
the phenotypic differences and similarities between these
mutants as well as between different combinations of
double mutants (Niccoli et al., 2003; Glynn et al., 2001).
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The switch from no-growth to growth is promoted by
recruiting the growth machinery to the cell ends. This
process seems to be based on an interplay between
molecules that are transported by microtubules or actin
filaments to the growth sites and cell end markers
accumulated at the growth sites (e.g. Marks and Hyams,
1985; Mata and Nurse, 1997; Behrens and Nurse, 2002;
Chang and Verde, 2004). In terms of circuit A, z could
represent the process of growth material delivery to cell
ends, while x and y could represent the activity of cell
end markers. The vector (y, z) ¼ (1, 1) thus defines the
state of the system in which the delivery is active and the
respective marker is located at the proper cell end,
whereas the vector (y, z) ¼ (0, 0) defines the state of no
delivery and delocalized cell end marker. This is
consistent with a positive feedback mechanism between
Mod5p and Tea1p (Snaith and Sawin, 2003); Tea1p,
after localization to the cell ends, forms a complex
involving Mod1p that plays a role in marking the ends
for growth.
For the monopolar to bipolar transition, circuit A

suggests the existence of two different cell end markers,
one for monopolar growth and one for bipolar growth,
with the activated marker inhibiting the other marker.
An active cell end marker could guide the growth
machinery to the site of polarized growth. Several
phenomena can be explained by assuming that for
normal growth behavior, the corresponding marker has
to be both properly localized and properly activated.
This helps to interpret the memory properties of the cell
ends, which determine the site of growth initiation in
daughter cells after division. In wild-type cells, growth
begins at the ends that previously grew, which seem to
‘remember’ their growth history by retaining markers.
Based on circuit A, it is also possible to discuss mutants,
in which the new cell end is marked but growth is not
induced. Some data suggest that the non-growing cell
end is marked before growth begins, possibly by a
different marker. The induction of bipolar growth could
therefore be understood as a switch from the activated
state of the monopolar end marker to the activated state
of the bipolar end marker. It seems that the induction of
bipolar growth requires a preparatory phase needed to
make the new cell end competent for growth. Tea1p
appears to play a role in this preparatory phase while
Bud6p appears to function in the induction of growth.
Accordingly, in the presence of Tea1p and absence of
Bud6p (see circuit C) the new end is marked but is not
growing (Glynn et al., 2001).
With this analysis of the regulation of fission yeast

growth behavior, we tried to point out the utility of the
logical circuit approach in studying principles of
biological regulation. More specifically, we have shown
that even a simple, switch-like and irreducible logical
circuit can describe several features of fission yeast
growth patterns, for both wild-type and mutant cells.
Some of these features are already well understood at
the molecular level. The present analysis indicates that
for molecular studies of biological regulatory processes,
a parallel analysis of corresponding logical circuits may
represent a useful complementary approach for the
identification of key properties of the system and to
reveal the relative importance of various cellular players.
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