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Background. The fission yeast Schizosaccharomyces pombe is a popular genetic model organism with powerful experimental
tools. The thiamine-regulatable nmt1 promoter and derivatives, which take .15 hours for full induction, are most commonly
used for controlled expression of ectopic genes. Given the short cell cycle of fission yeast, however, a promoter system that can
be rapidly regulated, similar to the GAL system for budding yeast, would provide a key advantage for many experiments.
Methodology/Principal Findings. We used S. pombe microarrays to identify three neighbouring genes (urg1, urg2, and urg3)
whose transcript levels rapidly and strongly increased in response to uracil, a condition which otherwise had little effect on
global gene expression. We cloned the promoter of urg1 (uracil-regulatable gene) to create several PCR-based gene targeting
modules for replacing native promoters with the urg1 promoter (Purg1) in the normal chromosomal locations of genes of
interest. The kanMX6 and natMX6 markers allow selection under urg1 induced and repressed conditions, respectively. Some
modules also allow N-terminal tagging of gene products placed under urg1 control. Using pom1 as a proof-of-principle, we
observed a maximal increase of Purg1-pom1 transcripts after uracil addition within less than 30 minutes, and a similarly rapid
decrease after uracil removal. The induced and repressed transcriptional states remained stable over 24-hour periods. RT-PCR
comparisons showed that both induced and repressed Purg1-pom1 transcript levels were lower than corresponding P3nmt1-
pom1 levels (wild-type nmt1 promoter) but higher than P81nmt1-pom1 levels (weak nmt1 derivative). Conclusions/

Significance. We exploited the urg1 promoter system to rapidly induce pom1 expression at defined cell-cycle stages, showing
that ectopic pom1 expression leads to cell branching in G2-phase but much less so in G1-phase. The high temporal resolution
provided by the urg1 promoter should facilitate experimental design and improve the genetic toolbox for the fission yeast
community.
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INTRODUCTION
The experimental manipulation of expression levels from specific

genes is a key genetic approach to elucidate gene function in model

organisms. A range of regulatable promoter systems have been

described for use in the fission yeast, Schizosaccharomyces pombe [1,2].

The most widely applied system is based on the thiamine-repressible

nmt1 promoter and two weakened derivatives [3–5]. While these

promoters offer a wide choice of transcription levels, they take ,15–

21 hours to reach maximum induction once thiamine is removed

from the medium, and ,2–4 hours for full repression after thiamine

addition. A truncated version of the nmt1 promoter shows altered

characteristics [6]: it reaches maximum expression within 3 hours

but requires a temperature shift for induction, which is expected to

trigger a cellular stress response [7].

Other promoter systems have been described for fission yeast.

One system is based on ctr4 [8], which is strongly induced within

3 hours in the absence of copper. The addition of a copper

chelator as an inducing agent, however, leads to a large

transcriptional response [9]. The inv1 promoter fully induces

transcription within one hour in the absence of glucose in sucrose-

based medium, but induction is only transient as sucrose is

hydrolyzed to glucose, leading to inv1 repression after ,2 hours

[10]. The fbp1 promoter is also glucose-repressible [11]. Changes

in carbon sources, however, lead to substantial transcriptional and

metabolic responses ([12]; LLM and JB, unpublished observation).

The hsp16 promoter is activated within a few hours by heat shock

or other stresses [13], conditions that will also trigger substantial

stress responses [7]. The ectopic CaMV promoter is induced by

tetracycline [14] or by anhydrotetracycline that is a superior

inducing agent [15]. This promoter is regulatable in both minimal

and rich media and is fully induced within 12 and 9 hours in the

two media types, respectively [15]. The CaMV35S promoter shows

low basal expression levels under repressed conditions [15], which

should make it useful to study essential proteins.

Since the fission yeast cell cycle is completed within 2–3 hours,

the lack of a promoter system that can be rapidly regulated, similar

to the GAL system for budding yeast [16], is a serious drawback for

many experiments. We used genome-wide expression data to

identify conditions that lead to a strong and rapid regulation of few

specific genes. This approach culminated in the development of

the uracil-regulatable urg1 promoter system, which allows tight
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expression control of ectopic genes with otherwise minimal side

effects on genome-wide gene expression.

RESULTS AND DISCUSSION
Microarrays are ideal to screen for genes that are distinctly

regulated under selected conditions that otherwise have little effect

on global gene expression. In a study to determine how commonly

used media supplements affected global transcriptional patterns in

fission yeast, we identified the three ‘uracil-regulatable genes’ urg1

(SPAC1002.19), urg2 (SPAC1002.17c), and urg3 (SPAC1002.18)

whose transcript levels were highly increased when the pyrimidine

base uracil was present in the medium, a condition that affected

the expression of only ,0.5% of all genes (Figure 1A). This effect

was not transient: the increased transcript levels were maintained

after 24 hours in the continued presence of uracil (data not

shown). Notably, the three urg genes were clustered together on

chromosome I (Figure 1B). urg1 encodes a protein of the GTP

cyclohydrolase II family of enzymes involved in riboflavin

biosynthesis [17]. urg2 encodes a protein similar to the budding

yeast Fur1p uracil phosphoribosyltransferase of the pyrimidine

salvage pathway [18], while urg3 encodes a protein of unknown

function with a DUF1688 domain.

To analyse the regulation of the urg genes in more detail, we

determined their expression profiles at different times after

addition and removal of uracil (Figure 2). All three genes were

rapidly induced in uracil-containing medium, showing highly

increased transcript levels after 5 minutes of uracil addition and

peaking in transcript levels within 30 minutes. Similarly, transcript

levels of all three genes rapidly dropped after transfer to medium

without uracil. These results encouraged us to develop a new

promoter system for the rapid and specific regulation of ectopic

genes. We focussed on urg1 as it is the most strongly regulated gene

in response to uracil (Figure 1A; Figure 2). The difference in

relative regulation between urg1, urg2, and urg3 seems to mainly

reflect differences in basal expression levels: while all three genes

show similar absolute expression signals in rich medium

(containing uracil), the expression signals in minimal medium

are ,3- and 4-fold higher for urg2 and urg3, respectively,

compared to urg1 based on Affymetrix chip data [19]. Cells

deleted for urg1 were viable and showed wild-type growth rates,

both in the presence and absence of uracil (data not shown).

We analyzed available microarray data for urg1 expression

patterns under different conditions. In vegetative cells growing in

the absence of uracil, urg1 shows close to background signals on

microarrays and is among the 10% most lowly expressed genes

[19], and it is marginally periodically expressed during the cell

cycle [20]. The urg1 transcripts were induced ,10- to 20-fold in

response to cadmium and t-butylhydroperoxide but not in

response to heat shock, sorbitol, MMS, H2O2, or menadione

[7,21]. The urg1 transcripts were also induced ,10- to 20-fold in

late meiosis and, most strongly, during nitrogen starvation, where

transcript levels increased .100-fold [22–24], which is similar to

the response in uracil described above. It is possible that urg1 is

involved in recycling uracil as an alternative nitrogen source.

Interestingly, urg1 was even more highly expressed in an ura4

deletion background than in a wild-type background in the

presence of uracil, and conversely, ura4 was more highly expressed

Figure 1. The three urg genes are induced with uracil and clustered
in genome. (A) Scatter plot showing microarray signal intensities for
transcripts from cells grown in the presence (Y-axis) or absence (X-axis)
of uracil, whose transcriptomes were competitively hybridized on the
same microarray. The urg1, urg2, and urg3 genes are most strongly
induced in response to uracil, a condition that otherwise triggers only
minor gene expression changes. The grey dots reflect transcripts that
were flagged ‘absent’ during initial data processing [37]. (B) Genomic
arrangement of urg1, urg2, and urg3 genes on chromosome I.
Arrowheads indicate transcriptional direction. The SPAC1002.21 open
reading frame between urg1 and urg3 may not be a real gene: it is
annotated as ‘dubious’ in S. pombe GeneDB and does not seem to be
expressed in any conditions based on microarray data (unpublished
observations).
doi:10.1371/journal.pone.0001428.g001

Figure 2. The urg promoters control changes in mRNA levels in
response to uracil. Timecourse experiment showing the gene
expression profiles of urg1, urg2, urg3, and Purg1-pom1 at 5, 10, 30,
and 240 minutes after uracil addition, and at 10, 20, and 30 minutes
after uracil removal. The Y-axis shows gene expression ratios relative to
the same cells grown without uracil (0 minute timepoint). Gene
expression ratios were determined using microarrays. Note that the
presence of a second urg1 promoter in the same cells (Purg1-pom1) did
not affect the expression characteristics of the urg1 gene.
doi:10.1371/journal.pone.0001428.g002

Regulatable Promoter urg1
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in an urg1 deletion background (unpublished microarray data).

Thiamine, which represses the nmt1 promoter, has no influence on

urg1 expression levels ([25]; and unpublished data).

To develop a new regulatable promoter system, we cloned urg1

promoter fragments of different sizes (232, 675, and 924 bp

upstream of urg1 start codon) into the pFA6a-kanMX6-P3nmt1

module [26], replacing the nmt1 with urg1 promoter fragments. We

then applied PCR-based gene targeting with these three new

cassettes to put the pom1 gene [27] under the control of the urg1

promoter fragments. The 232 bp fragment showed constitutively

active transcription, whereas the 675 and 924 bp fragments both

led to similarly regulated transcription in response to uracil (data

not shown). These data suggest that the first 232 bp upstream of

the ATG start codon are sufficient for active transcription whereas

the sequences between 232 and 675 bp are required to down-

regulate transcription in the absence of uracil.

Based on these data, we cloned the 675 bp fragment containing

the functional urg1 promoter (Purg1) into several PCR-based

targeting vectors for straightforward integration of the promoter

upstream of selected genes in their normal chromosomal locations

(Figure 3). The available modules contain the kanMX6 or

natMX6 dominant markers, allowing selection for cells resistant

to the antibiotics G418 or nourseothricin (NAT), respectively

[26,28]. NAT allows easier selection on minimal medium (without

uracil), which can be advantageous in situations where constructs

with the active urg1 promoter lead to sick or dead cells. If required,

the products of genes placed under Purg1 control can also be

N-terminally tagged with 3HA, GST, or GFP(S65T) [26]. All the

modules shown in Figure 3 can be amplified using the same

forward primer, but they require different reverse primers

(Table 1). Genomic integration of Purg1 ensures more controlled

and homogeneous expression levels compared to analyses

involving multi-copy plasmids, which show great variations in

copy number. The 675-bp Purg1 fragment was used in all

experiments below.

We tested the urg1 promoter system by placing pom1 under the

control of Purg1 using the pFA6a-kanMX6-Purg1 cassette

(Figure 3; Table 2, strain JB381). The expression profile of pom1

driven by the urg1 promoter (Purg1-pom1) closely reflected the

profiles of the urg genes, showing similar timing of induction and

repression upon addition and removal of uracil, respectively

(Figure 2). Maximal Purg1-pom1 induction was reached within

10 minutes, which was ,2.2-fold higher than pom1 expression

levels driven from its own promoter (based on microarray data).

Rapid induction and repression time of Purg1-pom1, similar to urg1

under its own promoter, are also evident from PCR-based assays

reported before (Figure S9 in [19]). The ,10-fold induction of

pom1, however, was lower than for the urg genes themselves.

Several factors could contribute to this difference in relative

regulation. Some of this difference is due to higher basal pom1

expression: qRT-PCR data showed that Purg1-pom1 is ,3.8-fold

higher expressed than urg1 in the absence of uracil (Figure 4A).

Moreover, changes in half-live of transcripts can affect relative

transcript changes; the 39-untranslated region (UTR) of urg1

contains an AU-rich element (ARE) consensus sequence [29],

consistent with posttranscriptional control contributing to strong

changes in mRNA levels [30,31]. It is possible that inserting the 39-

UTR of urg1 behind genes already under the control of Purg1

would support lower basal transcript levels and larger relative

transcript changes after uracil addition. Alternatively or in

addition, the genomic context could influence the low expression

of urg1 genes under repressed conditions. Consistent with this

possibility, the expression levels of urg1 and urg2 increase in several

silencing mutants [32], suggesting that this genomic region is

relatively silent.

To compare the quantitative regulation by Purg1 with two

widely used nmt1-based promoters (the strong P3nmt1 and weak

P81nmt1; [3,5]), we performed qRT-PCR analysis of pom1 under

control of these three ectopic promoter systems (Table 2, strains

JB381, JB151, and JB178). Figure 4A compares the regulation of

Figure 3. Modules for PCR-based gene targeting to place genes under Purg1 control and N-terminal tagging of proteins. These modules are
derived from previously published modules [26,28] using a 675 bp fragment immediately upstream of the urg1 open reading frame. Transcriptional
directions are indicated by arrows. Restriction sites and tags are as described before (Figure 2 in [26]); the GFP tag carries the S56T mutation [39]. The
approximate sizes of the expected PCR products are indicated at right.
doi:10.1371/journal.pone.0001428.g003

Regulatable Promoter urg1
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pom1 under control of either Purg1 or P3nmt1 with the regulation of

urg1 and nmt1 under control of their native promoters. Both urg1

and nmt1 are more tightly regulated (higher induced and lower

repressed transcript levels) than Purg1-pom1 and P3nmt1-pom1. The

nmt1 gene under activating conditions is among the most highly

expressed genes in the S. pombe genome [19,33], and expression

levels driven by Purg1 are arguably closer to physiological levels for

most genes. Note that the relative mRNA levels for ectopic genes

put under control of regulatable promoters will be strongly

affected by features such as chromatin context and mRNA

stability, and different genes may show different regulation.

Figure 4B compares the regulation of pom1 under control of

Table 1. PCR primers for amplification of the modules in Figure 3.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Module Primer sequence

All modules (forward)1 59-(gene-specific sequence)-GAATTCGAGCTCGTTTAAAC-39

pFA6a-kanMX6-Purg1 (reverse)2 59-(gene-specific sequence)-CATATTGAATTAGTTCTAATTTAGT-39

pFA6a-natMX6-Purg1 (reverse)2 59-(gene-specific sequence)-CATATTGAATTAGTTCTAATTTAGT-39

pFA6a-kanMX6-Purg1-3HA (reverse)3 59-(gene-specific sequence)-GCA CTG AGC AGC GTA ATC TG-39

pFA6a-kanMX6-Purg1-GST (reverse)3 59-(gene-specific sequence)-ACG CGG AAC CAG ATC CGA TT-39

pFA6a-kanMX6-Purg1-GFP (reverse)3 59-(gene-specific sequence)-TTT GTA TAG TTC ATC CAT GC-39

1The forward primer is identical for all modules described here and is the same as for previously described modules containing nmt1-derived promoters [26]. The gene-
specific portion of the primer is typically chosen to correspond to sequences 100–200 bp upstream of the start codon. A web-based tool for automated primer design
is available for these primers [35].

2A 25-mer universal sequence is used to anneal to Purg1 due to the AT-rich nature of this sequence; the gene-specific portion is therefore reduced to 75 bp for 100-mer
primers, which does not seem to affect targeting efficiency. The complement start codon is indicated in italic. For regulated expression of full length proteins, the gene-
specific portion of the primer corresponds to the complement of the N-terminal codons of the target gene (without start codon).

3The reading frames of the tag sequences are indicated. These primers are the same as for the corresponding modules containing nmt1-derived promoters [26]. For N-
terminal tagging of full-length proteins, the gene-specific portion of the primer corresponds to the complement of the N-terminal codons of the target gene (including
start codon). Note that the 39 portions of these primers are specific to the tags and correspond to the complement of the C-terminal tag codons (without stop codon).
A web-based tool for automated primer design is available for these primers [35].

doi:10.1371/journal.pone.0001428.t001..
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Figure 4. Quantitative comparison of regulation by urg1 and nmt1 promoters using pom1 as reporter. (A) Histogram showing mRNA expression
levels determined by qRT-PCR for pom1 under control of Purg1 and P3nmt1 compared to expression levels of urg1 and nmt1 genes themselves
(colour-coded as indicated in the Figure). Expression levels were determined under both induced (ON) and repressed (OFF) conditions for the two
promoter systems. (B) Histogram as in (A) comparing mRNA expression levels of pom1 under control of Purg1, P3nmt1, and P81nmt1. The same
arbitrary units are used for (A) and (B). Cells were grown for two hours either in the presence or absence of uracil (for Purg1), or for 21 hours in the
presence or absence of thiamine (for P3nmt1 and P81nmt1).
doi:10.1371/journal.pone.0001428.g004
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Purg1, P3nmt1, or P81nmt1. Under induced conditions, Purg1-pom1

was ,3.5-fold more expressed than P81nmt-pom1 but ,3.5-fold

lower expressed than P3nmt1-pom1. Under repressed conditions,

Purg1-pom1 was ,1.7-fold more expressed than P81nmt1-pom1 but

,2.7-fold lower expressed than P3nmt1-pom1. These data are

consistent with gene expression ratios observed after competitively

hybridizing samples to DNA microarrays (induced conditions, Purg1-

pom1/P3nmt1-pom1: 2.9, Purg1-pom1/P81nmt1-pom1: 0.3; repressed

conditions: Purg1-pom1/P3nmt1-pom1: 1.6, Purg1-pom1/P81nmt1-

pom1: 0.6). Our nmt1 data are also similar to data from a previous

comparative analysis [1]. We conclude that for both induced and

repressed conditions, the gene expression levels attained from Purg1

are between those attained from P81nmt1 and P3nmt1.

These findings are corroborated by phenotype data. Deletion of

pom1 leads to aberrantly positioned polarized growth and

cytokinesis [27], while overexpression of pom1 under the control

of P3nmt1 leads to branched cells after 19 hours and to

depolarized, round cells within 25 hours [34]. In the absence of

uracil, the Purg1-pom1 cells looked like wild-type cells (Figure 5A),

suggesting that basal transcription from the urg1 promoter provides

sufficient pom1 expression to prevent the defects associated with

pom1 mutants. The pom1 expression levels are ,3.8-fold below

average transcript levels [19], and repressed Purg1-pom1 levels were

,90% of the native pom1 levels (based on microarray data). We

conclude that the basal expression level from Purg1 can be

sufficient to fully support gene function, at least for relatively lowly

expressed genes such as pom1.

Induction of Purg1-pom1 expression by uracil addition led to

increasing numbers of bent and branched cells already after two

hours (Figure 5A), although these cells did not become round even

after 25 hours of Purg1-pom1 expression, consistent with weaker

pom1 expression than in P3nmt1-pom1 cells. In contrast, P81nmt1-

pom1 cells did not show any cell branching even 25 hours after

uracil addition, consistent with weaker pom1 expression than in

Purg1-pom1 cells. These findings are consistent with expression

levels driven by Purg1 being between those of P81nmt1 and P3nmt1,

and they illustrate the dramatic decrease in timing of transcrip-

tional induction when using Purg1.

As a further proof-of-principle, we used the Purg1-pom1 cells to

perform a cell-cycle experiment that would be difficult with the

nmt1 promoter. Available data suggest that Pom1p can activate

growth during the G2-phase of the cell cycle: 1) cells deleted for

pom1 cannot activate a second growth site at the new end and thus

fail to initiate bipolar growth during G2-phase [27]; 2) Pom1p

kinase activity is cell-cycle regulated and is higher in G2-phase

than in G1-phase [34]; and 3) overexpression of pom1 leads to

branched cells, indicating mislocalized growth sites (see above).

Taking these data together, we would predict that Pom1p can

promote cell branching when overexpressed in G2-phase but not

when overexpressed in G1-phase. To test this hypothesis, we

combined Purg1-pom1 with the temperature-sensitive cdc10 and

cdc25 mutants, which arrest in G1- and G2-phases, respectively, at

the restrictive temperature of 36uC (Table 2, strains JB509 and

JB511). We incubated the cdc10 Purg1-pom1 and cdc25 Purg1-pom1

strains at 36uC to enrich for cells in G1- and G2-phases,

respectively. After two hours, we added uracil to the medium to

induce pom1 expression and incubated the cells for another two

hours at 36uC. As predicted, the cdc25 Purg1-pom1 strain showed an

about 7-fold higher proportion of branched cells than the cdc10

Purg1-pom1 strain (Figure 5B–D). It is possible that the few branched

cells in the cdc10 background reflect that two hours at 36uC was not

sufficient to completely arrest all cells in G1-phase. These data

support the notion that Pom1p can activate growth during the G2-

but not during the G1-phase of the cell cycle. Note that this type of

experiment would be very complicated or impossible with the nmt1

promoter system due to the long induction times.

Conclusion
We believe that the urg1 system will prove to be a popular and

valuable addition to the genetic toolbox available to fission yeast

researchers. Besides regulation of the three urg genes, clustered

together on chromosome I, the addition of uracil has only minimal

effects on global gene expression and should affect cellular

physiology less than the changes in carbon sources required for

the budding yeast GAL promoter system. This specific effect on

gene expression will also make it easier to interpret regulatory

effects of genes under urg1 promoter control in genome-wide

studies. The urg1 promoter system could also be used to control

gene expression in specialized situations, such as to induce ectopic

genes in nitrogen-starved cells, a condition that leads to urg1

induction in the absence of uracil. The pom1 gene under Purg1

control is fully induced and repressed within ,10 minutes of uracil

addition and removal, respectively. Both induced and repressed

Purg1-pom1 transcript levels are intermediate between those from

the weakest and the strongest nmt1 promoter driving pom1.

Probably, Purg1 will be most useful to rapidly induce transcription

of selected genes, e.g. to provide a pulse of expression during a

defined cell-cycle stage. As most promoters, Purg1 supports

substantial basal expression levels even when ‘switched off’. As

for the nmt1 promoter, regulation of urg1 transcripts themselves is

tighter and stronger compared to the regulation of ectopic

transcripts by Purg1. This difference could reflect local chromatin

environment and/or additional posttranscriptional control. In any

case, the half-lives of different transcripts will affect changes in

transcript levels, and addition of the 39-UTR of urg1 might

promote a tighter regulation of ectopic transcripts. Future

refinements of the urg promoter system, including manipulations

of the promoter sequence and analysis of uracil concentration

effects, may further increase its usefulness.

MATERIALS AND METHODS

Strains and yeast experiments
Strains used in this study are listed in Table 2. Strain JB381 was

constructed using the new pFA6a-kanMX6-Purg1 module

(Figure 3) and transformed as described [26]. 100-mer primers

were designed using PPPP [35] such that 160 bp of the native

pom1 promoter were replaced with Purg1. Transformed cells were

checked for correct integration by colony PCR using a forward

primer in Purg1 (59-ATAAATAAGGGAGGAAATCCATACG-

39), whose 59-end is located 203 bp upstream of the ATG start

Table 2. Strains used in this study.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Strain Genotype Source

JB22 972 h2 Lab collection

JB151 kanMX6-P3nmt1-pom1 h2 [34]

JB178 kanMX6-P81nmt1-3HA-pom1 h2 Lab collection

JB381 kanMX6-Purg1-pom1 h2 This study

JB383 urg1D::kanMX6 h2 This study

JB506 cdc10-V50 leu1-32 h+ Lab collection

JB508 cdc25-22 ura4-D18 h+ Lab collection

JB509 cdc10-V50 kanMX6-Purg1-pom1 This study

JB511 cdc25-22 kanMX6-Purg1-pom1 This study

doi:10.1371/journal.pone.0001428.t002..
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codon of urg1, and a reverse primer complementary to pom1. Strain

JB383 was created by PCR-based gene deletion [26]. Strains

JB509 and JB511 were created by crossing JB381 with JB506 and

JB508.

Cells were grown at 32uC in Edinburgh Minimal Medium

(EMM) [36], adding either uracil at 0.25 mg/ml to induce Purg1,

or 15 mM thiamine to repress the nmt1 promoter. For the

experiment in Figure 2, JB381 cells were grown to ,56106 cells/

ml before uracil addition; after four hours, cells were filtered,

washed once in 32uC EMM without uracil, and incubated in 32uC
EMM without uracil for another 30 minutes. For Figure 5A,

JB381 cells were grown in EMM without uracil, before adding

uracil and growing for two hours. For the experiment in

Figure 5B–D, JB506, JB508, JB509 and JB511 cells were grown

at 25uC to ,56106 cells/ml, shifted to 36uC and grown for two

hours, at which time uracil was added, and grown for another two

hours at 36uC.

Construction of Purg1 modules
To construct the modules of Figure 3, the urg1 promoter (Purg1)

was amplified from S. pombe genomic DNA by PCR using the

following primers: urg1F675 (59-AAAAGATCTCGAT-

TAGCGTGACACGGATT-39) and urg1R (59-AAATTAAT-

TAACCTTTGTTCAGTGGCAAGCAT-39) containing BglII

and PacI sites (underlined) for cloning into the corresponding sites

of the pFA6a-MX6 vectors [26,28]. For the smaller and larger urg1

promoter fragments tested, we used the following two forward

primers instead: urg1F232 (59-AAAAGATCTGCGCTTTCATT-

GATAGTATCTG-39), urg1F924 (59-AAAAGATCTTGCACT-

CAGCGTAAAGTCAAG-39). All PCR amplifications were

carried out with HiFi-Platinum Taq (Invitrogen), and ligations

were carried out using T4 DNA ligase (Roche) and transformed

into DH5a competent cells (Invitrogen). Plasmid DNA was

extracted using the Illustra GFX Micro Plasmid kit (GE

Healthcare).

Figure 5. Expression of pom1 under control of Purg1 leads to cell branching in G2-phase. (A) Purg1-pom1 cells were gown without uracil (left);
uracil was then added to the same culture and cells were grown for another two hours (right). Cells show no morphological aberrations under
repressed conditions but form misplaced growth sites after activation of Purg1. (B) cdc10 and cdc10 Purg1-pom1 cells grown for two hours at
restrictive temperature without uracil and two hours at restrictive temperature with uracil. Activation of Purg1 has little effect on cell morphology. (C)
cdc25 and cdc25 Purg1-pom1 cells grown for two hours at restrictive temperature without uracil and two hours at restrictive temperature with uracil.
Activation of Purg1 leads to misplaced growth sites. (D) Histogram comparing percentage of branched cells when Purg1-pom1 is activated in either
cdc10 or cdc25 backgrounds.
doi:10.1371/journal.pone.0001428.g005
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Microscopy
Light microscopy was carried out using a Carl Zeiss Axiostar

equipped with a Canon Powershot A95 camera. Images were

captured with the Canon ZoomBrowser EX software. For Figure 5,

at least 200 cells were counted.

Microarray analysis
RNA was extracted and processed for microarray hybridization as

described before ([37]; www.sanger.ac.uk/PostGenomics/

S_pombe). Cy3 and Cy5 (GE Healthcare) incorporation was

carried out using the Invitrogen Superscript direct cDNA labelling

system according to manufacturer’s instructions. For the time-

course experiment in Figure 2, all timepoints were pooled and

used as a common reference for each timepoint. Microarrays were

scanned using an Axon GenePix 4000B scanner and analyzed with

GenePix 6.0 software. Quality control and data normalization was

carried out as described [37]. Results were visualized with

GeneSpring GX 7.3 (Agilent). The processed microarray data

are available from our website: www.sanger.ac.uk/PostGenomics/

S_pombe.

Quantitative RT-PCR
For the qRT-PCR experiment in Figure 4, cells were grown for two

hours either in the presence or absence of uracil (strain JB381), or for

21 hours in the presence or absence of thiamine (strains JB151 and

JB178). RNA was isolated and purified as described [37] and treated

with Turbo DNA-free (Ambion). Reverse transcription reactions were

performed using Superscript III (Invitrogen). qRT-PCR reactions

were carried out using Taqman specific probes (Sigma) and Platinum

qPCR mix with ROX (Invitrogen) on an Applied Biosystem 7900HT

system according to manufacturer’s instructions. All primers and

probes were designed using Primer3 software ([38]; http://primer3.

sourceforge.net). Expression levels for urg1, nmt1, and pom1 were

determined from two repeats against a standard curve. Arbitrary

expression units were calculated using a standard curve for each probe

and primer set from serial dilutions of S. pombe genomic DNA. The

following fluorescent probes with 6-FAM as 59-end reporter and

TAMRA as 39-end quencher were used: P-C1223.02: 59-TTATTC-

CAAGCGTTTGGGCATCATC-39; P-C2F7.03c: 59-CCTTTAC-

CGAATTTGCCAATGGAAT-39; P-C1002.19: 59-CATTAA-

GAAGATTGACCGCATGCTCA-39; P-C19C2.07: 59-TACTT-

CTCCATTGCCGCCGCTTT-39; and P-C1322.04: 59-TGGTGA-

CGTTAATATTGGTCGCAATG-39. The following PCR primers

were used: Q-C1223.02F: 59-TCCCCAGAGATTGGAACAAG-39;

Q-C1223.02R: 59-TTCTCATCGGGGTCAAGTTC-39; Q-C2F7-

.03cF: 59-TGCGAGACCCCCAAATATAG-39; Q-C2F7.03cR: 59-

CTCTTTCGGGGAAGGTAAGG-39; Q-C1002.19F: 59-GCGT-

TTCCAAGCTCTTATGC-39; Q-C1002.19R: 59-AACAATGG-

CATCATGCTTCA-39; Q-C19C2.07F: 59-CGTGAGCTCTCC-

TCCGTTAC-39; Q-C19C2.07R: 59-TTACCGGGCTTGTAGA-

CACC-39; Q-C1322.04F: TTCCCAGCATTCCAAAAATC-39; Q-

C1322.04R: 59-GTTGGCATCACTAGCGACAA-39.
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