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ABSTRACT

Post-transcriptional gene regulation is mediated
through complex networks of protein–RNA inter-
actions. The targets of only a few RNA binding
proteins (RBPs) are known, even in the well-
characterized budding yeast. In silico prediction of
protein–RNA interactions is therefore useful to guide
experiments and to provide insight into regulatory
networks. Computational approaches have identified
RBP targets based on sequence binding preferences.
We investigate here to what extent RBP–RNA inter-
actions can be predicted based on RBP and mRNA
features other than sequence motifs. We analyze
global relationships between gene and protein
properties in general and between selected RBPs
and known mRNA targets in particular. Highly
translated RBPs tend to bind to shorter transcripts,
and transcripts bound by the same RBP show high
expression correlation across different biological
conditions. Surprisingly, a given RBP preferentially
binds to mRNAs that encode interaction partners for
this RBP, suggesting coordinated post-transcriptional
auto-regulation of protein complexes. We apply a
machine-learning approach to predict specific RBP
targets in yeast. Although this approach performs
well for RBPs with known targets, predictions for
uncharacterized RBPs remain challenging due to
limiting experimental data. We also predict targets
of fission yeast RBPs, indicating that the suggested
framework could be applied to other species once
more experimental data are available.

INTRODUCTION

Progress in experimental techniques for the detection of
protein–protein interactions has uncovered highly

interconnected cellular networks (1,2). Proteins can also
bind to DNA or RNA. RNA binding proteins (RBPs),
which rival transcription factors in number, play crucial
roles in post-transcriptional regulation of gene expression,
including the processing, export, localization, turnover
and translation of mRNAs. Control at the post-
transcriptional level adds substantial complexity to gene
expression and is mediated by various combinations
of RBPs that determine the fate of the bound tran-
scripts and that co-ordinately regulate specific subsets
of mRNAs (3–5). Whereas considerable progress has
been made in mapping transcriptional networks in
some organisms, post-transcriptional networks are rela-
tively poorly understood despite being of similar
importance.
Protein–RNA interactions can be sequence specific,

where the protein binds to specific motifs of a few nucleo-
tides in RNA loops, or non-sequence specific, where no
special sequence on the mRNA is necessary (6). In many
cases, the protein forges the structure of the RNA as the
interaction takes place (7). Sequence specific interactions
are mostly mediated by hydrogen bonds and non-polar
contacts (8–10). Protein domains known to take part in
protein–RNA interaction are the RNA recognition motif,
the double-stranded RNA binding motif, the K-homology
domain and the zinc finger motif (11). Different amino
acids have a different propensity for binding RNA, with
histidine, arginine, threonine and lysine showing a particu-
lar affinity for RNA. Little is known about RNA se-
quences that can be bound by specific RBPs. The most
likely nucleotide to be bound by an RBP is uracil
followed by adenine (12).
The targets of RBPs can be experimentally identified

through RBP immunoaffinity purification (RIP),
whereby the proteins are purified together with the
bound RNAs; the associated RNAs can then be globally
interrogated on microarrays (RIP-chip) (13). Other
approaches include the yeast three hybrid system, which
identifies proteins that bind an RNA sequence of interest
or mRNAs controlled by a specific regulatory protein

*To whom correspondence should be addressed. Tel: +0203 1081602; Fax: +44 020 76797096; Email: j.bahler@ucl.ac.uk
Correspondence may also addressed to Vera Pancaldi. Email: v.pancaldi@ucl.ac.uk
Present address:
Vera Pancaldi, Department of Plant sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.

Nucleic Acids Research, 2011, 1–11
doi:10.1093/nar/gkr160

� The Author(s) 2011. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

 Nucleic Acids Research Advance Access published April 1, 2011
 at U

C
L Library S

ervices on A
pril 18, 2011

nar.oxfordjournals.org
D

ow
nloaded from

 

http://nar.oxfordjournals.org/


(14,15), RNAcompete, a method which exploits a single
binding reaction combined with microarray analysis to
identify the enriched mRNAs bound by each of the
proteins (16), and CLIP (cross-linking and immuno pre-
cipitation), a method that can directly determine the
binding sites of RBPs (17).
Bioinformatics approaches have been used to predict

the presence of new RNA binding motifs and to iden-
tify new RBPs. Primary protein sequences have been
used as features in machine-learning approaches directed
at the classification of RBPs (18). Other works have
included physico-chemical properties of the RBPs
directly derived from the sequence and, in some cases,
even predicted solvent accessibility and secondary struc-
tures (19,20). Advances in the understanding of the
physics behind protein–nucleic acid interactions have
enabled the prediction of the RNA structure that can be
bound by a specific protein motif. The same RNA struc-
ture, however, can be produced by multiple sequences
(21). Recently, a motif finding approach which also con-
siders the RNA structure in establishing the binding pref-
erences of RBPs has been suggested (22), which aims at
identifying the binding characteristics for each specific
RBP.
Thus, RBPs have been identified and classified, but

knowledge on their RNA target specificities is currently
limited to data from wet-lab approaches. There are clear
differences in the docking of proteins on RNA compared
to DNA, the former being characterized by looser packing
and dynamic conformational changes of RNA (23).
Whereas binding of transcription factors to DNA occurs
mostly through short sequence motifs, the less constrained
binding between proteins and RNAs may also depend on
physico-chemical and structural properties. In addition to
sequence features, it is likely that RBP–RNA interactions
are determined by some combination of their properties,
be they physical or functional. The non-trivial, and likely
non-linear, relationships between a number of features
related to an RBP and its targets can be identified and
exploited by machine-learning algorithms, such as
Support Vector Machines (SVMs) (24) and Random
Forests (RF) (25), to predict new targets. These methods
perform classification tasks where a set of known objects is
used to train a prediction algorithm in classifying new
objects, determining whether new pairs of RBPs and
RNAs are interacting. Any approach that could predict
general features of the RBP–RNA interactions, or even
the specific RNA targets themselves, would be useful.
Toward this goal, we analyzed more than 100 gene and

protein features in budding yeast (Saccharomyces
cerevisiae), which allow us to understand the relations
between different properties of proteins and mRNAs in
general. Next, we identified characteristics that distinguish
RBPs from other proteins. We then analyzed correlations
between the features of a set of 40 RBPs and their experi-
mentally determined target mRNAs (26) and investigated
pairs of RBPs with known targets in terms of expression
correlations and physical interactions. Furthermore, we
explored machine-learning approaches to predict new
RBP targets in budding yeast and in fission yeast
(Schizosaccharomyces pombe).

MATERIALS AND METHODS

Statistical analysis

The list of budding yeast genes was obtained from the
Saccharomyces Genome Database (SGD) and the GO
terms from the GO slim mapper in SGD (downloaded in
October 2009). Lists of RBPs and ribosomal proteins were
also obtained from this source. Our list of RBPs does not
include ribosomal proteins leaving a total of 210 proteins.
All statistical tests were performed using R. Spearman
correlation coefficients were calculated for all the
features, P-values were corrected for multiple testing
with Bonferroni correction. Wilcoxon Rank-Sum tests
(WRSTs) were carried out to establish the significance of
difference in the features for RBPs versus other proteins.
Correlations between protein and mRNA features are
only considered if they appear to be significant in the
positive set and the average P-value of the 100 negative
realizations is not significant. After processing the differ-
ent data sources, data was available for around 2700
budding yeast proteins. By eliminating some features, we
could include most of the genome in the analysis and
verify that no substantial differences were found
compared to the full data set. Gene Ontology enrichment
analysis was performed with the GO term finder tool (27).

Negative randomized sets

The RBP–mRNA pairs in the positive set were shuffled by
reordering the proteins at random while keeping the
mRNA fixed for a total of 100 random sets. These do
not exclude interactions from the positive set, but it is
expected that the overlap should be small compared to
the total. For the machine learning, a single negative set
was carefully constructed in the same way but this time
ensuring that there was no overlap with the positive set.

Expression correlation

Pearson correlation was calculated for each gene across
502 different genetic conditions, cell programs and envir-
onmental perturbations (data kindly provided by Audrey
Gasch).

Machine-learning approach

We interpret the problem of predicting links between RBPs
and mRNAs as a binary classification task where edges in
the interaction network can either be present or absent.
Following training with known interactions and a
random negative set, we make predictions that give us a
probability for each object to belong to one class or
another. To estimate the performance of the method, we
use a subset of the data as a training set and the rest as a test
set. We can then measure how many of the test set positive
pairs we predict correctly, true positives (TP), how many
we do not predict, false negative (FN), how many negative
test pairs we predict, false positives (FP), and how many
negative test pairs we correctly do not predict, true
negatives (TN). Measures of performance are defined as
follows: Specificity=TN/(TN+FP), sensitivity=TP/
(TP+FN), accuracy= (TP+TN)/(TP+TN+FP+FN).
We also used receiver operating characteristic (ROC)
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curves to visualize how changing the threshold of probabil-
ity, which we consider the boundary between negative and
positive prediction, changes the number of TPs and FPs
(ROCR package for R). In the ROC curves, the color rep-
resents the threshold of probability, each point of the curve
having as coordinates the number of TPs and FPs obtained
with the threshold given by its color, ranging from 0 to 1 as
shown in the color bar. An additional measure of perform-
ance is the area under the ROC curve (AUC), which is
equal to 0.5 in the case of totally random predictions and
equal to 1 when all the predictions are correct.

SVMs

SVMs are tools that have been used extensively to perform
classification and regression tasks in multidimensional
spaces (24). We trained our SVMs using package e1071
in R which is an implementation of LibSVM (28). The
objects in our classifications are pairs of proteins and
mRNAs, and we use the gene and protein features as co-
ordinates of each of the objects in a multidimensional
space, scaling them to unit variance and zero mean. The
first step involves finding the support vectors, which define
the maximal distance plane from the two object classes.
Once these are known, they can be used to classify objects
of unknown class, based on their features. We chose a
Radial Basis Function kernel that allows us to consider
non-linear relationships between the features. Two param-
eters can be tuned, � and the cost of misclassified objects
in the training set C. These were optimized using a par-
ameter search function performed on a subset of the data
in a cross-validation framework (tune.svm). Using other
types of simpler kernels led to poorer performance in
cross-validation tests (data not shown).

RF

A RF is a classifier based on growing an ensemble of
decision trees, first proposed in (25). Amongst its advan-
tages is the fact that the importance of features is auto-
matically calculated. We used the randomForest package
for R, growing 500 trees and we use the mean decrease
inaccuracy as an estimate of the importance of each
feature.

Training set construction

A positive set of RBP–mRNA interactions was taken from
(26). A balanced negative set, where only the proteins and
the mRNAs from the positive set were used, was
assembled preserving the degree of both protein and
mRNA. Only pairs for which all features were known
were used both at the training and testing stages. Table
1 shows all the features and which ones were used in each
of the different SVMs (Supplementary Table S1). The
feature pairs were assembled by concatenating the
protein and mRNA features in a single feature vector.
The importance of maintaining the degree of each node
of the network was recently highlighted by (29), where it
was shown that not having this would lead to overesti-
mation of the method’s performance. Although it was
deemed important to proceed in this fashion, previous

results on unseen data obtained with less strictly
balanced data sets were comparable to the ones presented.

Statistics of protein and genetic interactions in the
different data sets

Supplementary Table S2 lists the data that was used to
calculate whether proteins that share mRNA targets are
more likely to share physical interactions. The observed
number of interactions in each subset is compared to the
number expected from sampling the same number of pairs
of proteins at random. Statistical Fisher’s tests were also
performed as described in Supplementary Table S2.

RESULTS AND DISCUSSION

Overall relationships between gene and protein features

To provide a framework for studying specific associations
between RBPs and their mRNA targets, we first
assembled available properties of genes and corresponding
proteins in budding yeast and analyzed their global rela-
tionships. We compiled a large list of properties for all
budding yeast genes, including mRNA properties, such
as UTR characteristics, RNA structure, translational
features, expression levels and protein properties, such as
physical features and Gene Ontology associations (Table 1
and Supplementary Table S1). Multiple relationships were
evident amongst these properties.
Considering all budding yeast proteins, we uncovered

several new relationships (Supplementary Dataset S1,
Bonferroni correction was applied to all P-values):
proteins with high nitrogen content often localize to
mitochondria, show higher isoelectric points, and are ex-
pressed at lower levels (Spearman r=�0.29, P< 10�73).
We also detected strong correlations involving the
physical locations of genes on the genome. For example,
the 30-UTR of genes tends to be longer on one of the DNA
strands than on the other (WRST, P=10�13). Although
the reason for this intriguing difference remains to be ex-
plained, we also observe a correlation between 30-UTR
length and translational efficiency (measured by codon
adaptation index). Tuller et al. (30) have noted a correl-
ation between the 30-UTR length and mRNA half-life and
correspondingly mRNA levels, which could indicate a
possible biological difference between genes on the two
strands. The ribosome density correlates positively with
the presence of predicted mRNA structure, expressed as
the density of the stems on the transcript. This finding
could be related to the observed inverse correlation
between ribosome density and mRNA length (31–34).
While this result by itself was not surprising, it suggested
that the predicted secondary structure of mRNAs was
reliable. Moreover, this finding is consistent with recent
experimental measurements of paired bases in each
mRNA (35). The score calculated from this experiment
correlates with the number of stems predicted by the
Vienna package; it also correlates negatively with the
folding energy (r=�0.55 P< 10�200) and positively with
the stem density (r=0.48, P< 10�90).

Nucleic Acids Research, 2011 3

 at U
C

L Library S
ervices on A

pril 18, 2011
nar.oxfordjournals.org

D
ow

nloaded from
 

http://nar.oxfordjournals.org/cgi/content/full/gkr160/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr160/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr160/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr160/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr160/DC1
http://nar.oxfordjournals.org/


Characteristic features of RBPs

We next focused on the list of budding yeast RBPs to
identify what properties distinguish them from other
proteins. Properties that characterize RBPs may reflect
mechanisms for RNA binding and for binding
specificities. We used WRST to assess differences
between RBPs and other proteins (Supplementary
Dataset S2). In addition to confirming previous observa-
tions (36), we found that RBPs had significantly greater
nitrogen contents (WRST, P< 10�15). Moreover, we pre-
dicted the location of the RNA binding interfaces on each
protein (37), which showed an even higher nitrogen
content compared to the rest of the protein
(Supplementary Figure S2). The amino acids that are
more likely to bind to RNA are in fact rich in nitrogen
[e.g. arginine (11), histidine]. RBPs also tend to have
higher isoelectric points (WRST, P< 10�7). These data
highlight that interactions between proteins and nucleic
acids are mediated by electrostatic forces, with positive
charges on the protein surface complementing negative
charges on the RNA (38). We then proceeded to investi-
gate the characteristics of a small subset of 40 RBPs for
which targets are known (26). It is important to check for
any significant difference with the other RBPs to ensure
that the results are valid for all RBPs. The 40 RBPs with
known targets showed only marginally lower translation
efficiencies (WRST, P< 10�4) and higher hydropathicity
(WRST, P=0.001) compared to other RBPs. We there-
fore conclude that the RBP subset with known targets is
largely unbiased (26) and that the observed characteristics
are generally valid (Supplementary Dataset 2b).

Relationships between features of RBPs and their
mRNA targets

We next searched for relationships between the properties
of the 40 RBPs and properties of their reported mRNA
targets. We considered over 12 000 protein–mRNA inter-
actions (26). The negative controls were assembled by
shuffling the RBPs and mRNAs from the positive set
(Supplementary Dataset S3) into 100 randomized sets,
preserving the number of interactions for each protein
and for each mRNA (‘Materials and Methods’ section).

Figure 1 shows heatmaps for correlations and corres-
ponding P-values for the positive set and the average of
the absolute values of the 100 randomized sets, with
properties separated into protein and transcript features.
This analysis highlights that correlations involving two
protein or two mRNA features are present in positive
and negative sets, whereas the positive set reveals add-
itional correlations relating features of proteins to
features of mRNA targets (Supplementary Datasets S4
and S5). Figure 2A and B shows selected correlations in
common between the positive and negative sets for protein
and mRNA features respectively. Figure 2C shows
selected correlations between features of RBPs and their
mRNA targets that were significant only in the interacting
pairs (Supplementary Dataset S6). The strongest correl-
ation was seen between the relative amount of amino
acids such as glycine, isoleucine and valine and the
length of the mRNA target (Spearman r=�0.43,
P< 10�160). Second, highly translated proteins, that is
RBPs with high ribosome density, bind to shorter
mRNA targets on average (Spearman r=�0.31,
P< 10�71). Shorter mRNAs are highly expressed, which

Table 1. Features used in the correlation analysis and in the predictions

Feature class Features and description of data Protein RNA

Gene Ontology GO RNA metabolism, GO protein biosynthesis, GO transcription,
GO transport, GO DNA metabolism, GO mitochondrion GO cell cycle,
GO signaling, GO bioprocess GO metabolism

X X

Chromosomal position Chromosome, genomic strand, chromo. Start coordinates, chromo. Stop
coordinates

X X

Gene physical properties Length (ORF length), number of introns, first intron GC, first intron length X X
Protein physical properties Isoelectric point, kDa (mass), TRP, VAL, etc. (total) and A, Y, etc. (relative)

abundance of each amino acid, sulphur content and nitrogen content
X X

Other physical properties Codon Adaptation Index, protein length, codon bias, frequency of Optimal
Codons (FOP), hydropathicity (Gravy score, indicating hydrophylicity or
hydrophobicity) aromaticity (frequency of aromatic amino acids such as
Phenylalanine, Tyrosine and Tryptophan)

X

Protein localization Local. Vacuole, Local. Cytoplasm, Local. Nucleus, Local. End. Ret. X
Experimental translation mRNA half-life, ribosome occupancy, ribosome density, mRNA levels X X
mRNA properties mRNA properties (Vienna RNA package): stem density; number of stems;

3stems, 5stems and orfstems (per length in transcript sections); c3 c5 co
(absolute number); mRNA fold. energy; score (PARS)

X

Predicted protein structure PSIPRED prediction of secondary structure: coils in struc., strands in struc.,
helix in struc

X

UTR properties UTR properties: 30- and 50-UTR length, 30-UTR A cont. etc . . . (relative
abundance of each RNA base for the two UTRs); u3AC etc . . .
(dinucleotide occurence).

X

Genetic interactions Known genetic interactions from the BioGRID. X X

Some features are used only for RBPs, some only for the mRNAs and some for both, as indicated. (Detailed feature names and references in
Supplementary Table S1).
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may require the RBPs that bind to them to be more
abundant. Third, the relative amount of glycine correlates
negatively with the presence of introns in the mRNA
target (r=0.15, P< 10�8), and the mRNA targets of
proteins involved in RNA metabolism are enriched for
introns (r=0.15, P< 10�19), as expected due to their
likely role in splicing (39). Fourth, proteins with

high-isoelectric points tend to bind to long mRNAs with
many stems (r=�0.18, P< 10�27); there is a negative cor-
relation, however, between isoelectric point and relative
proportion of bases in stems (r=�0.13, P< 10�14), sug-
gesting that it is the actual length that matters and not the
stem density.
At the specific pH of the cytoplasm, longer proteins

with higher isoelectric points are strongly positively
charged and can balance the charge over longer stretches
of negatively charged mRNA. Moreover, highly
translated proteins are expected to be more abundant, so
we speculate that the increase in protein concentration will
favor complex formation even with weakly attracting
short mRNA targets. Electrostatic properties have been
shown to be useful in classifying RBPs into subclasses
based on the RNA type they bind (38). Furthermore,
the isoelectric point as well as the abundance of glycine
correlate highly with the relative content of a-helices,
b-strands and coils in the RBP (Spearman r=0.61,
P< 10�275), providing a possible link between the electric-
al properties of the protein and the structural features.
Fifth, RBPs involved in transcription tend to bind to
mRNAs with less structure (r=�0.1, P< 10�7). Finally
RBPs that are highly expressed tend to bind to mRNAs
with shorter 30-UTRs (r=�0.1, P< 10�6). To conclude,
we find a set of correlations specific to the RBP–mRNA
pairs that could play a role in establishing the binding
specificities of the RBPs, independent of any sequence or
structural motifs on the mRNA targets.

Comparison with correlations found in human data

The described features allow us to analyze RBP–mRNA
pairs in terms of their physical structure and constraints as
well as their biological roles (e.g. through Gene Ontology)
without relying solely on RNA and protein sequence
motifs. We believe that the wealth of correlations
identified here represents a general framework to under-
stand post-transcriptional networks in other organisms,

Figure 2. A selection of Spearman correlations between features of the budding yeast protein–mRNA pairs. Blue and red lines indicate positive and
negative correlations, respectively, with thicker lines indicating stronger correlations. (A) Correlations of protein features, calculated for the
40 budding yeast proteins for which mRNA targets are known (26). (B) Correlations of mRNA features, calculated for all the mRNAs that are
RBP targets. (C) Correlations between protein and mRNA features only present in experimentally verified RBP–mRNA interactions. Features are
circled in different colors according to the type as indicated. Features and abbreviations are explained in Supplementary Table S1.

Figure 1. Differences in correlations between known RBP–mRNA
pairs versus randomized sets. (A) Pair-wise Spearman correlation for
positive protein–mRNA pairs. (B) Average of absolute value of
Spearman correlation in the 100 randomized negative sets.
(C) Spearman correlation P-values of the correlations in the positive
set depicted in A. (D) Spearman correlation P-values of the correlations
averaged over 100 randomized sets depicted in (B). Note how some
correlations between the RBP features and corresponding target
features are only present in the positive set (off-diagonal quadrants).
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and to formulate hypotheses about molecular mechanisms
that allow RBPs to recognize their RNA targets in vivo. A
recent paper looked at explaining protein and mRNA
levels based on different features of human proteins (40).
Based on these data, we attempted to verify in human the
correlations presented here. For example, these data show
that the isoelectric point has a strong correlation with the
partition energies of the protein (Spearman r=0.42,
P< 10�137), related to amino acid side chain properties,
as well as with the Van der Waals volume (Spearman
r=0.15, P< 10�137), related to solvent accessibility. We
thus assembled the lists of targets of five well-known
human RBPs (41), for a total of 829 RBP–mRNA pairs
and performed a correlation analysis similar to the one
carried out for budding yeast. Although this small list is
unlikely to be representative of all human RBPs, we again
explored correlations that are present only in this inter-
action set and not in the 100 randomized sets. A signifi-
cant inverse correlation between the partition energies of
the protein, the Van der Waals volume and the target
mRNA length was evident. The relative amount of
glycine correlates with the mRNA target length, which
was also found in our analysis in budding yeast
(Supplementary Dataset S7). Although a detailed correl-
ation analysis is not possible on such a small subset of
RBPs, the finding that electrical and structural properties
of the RBP are related to the length of the mRNA seems
to be conserved from yeast to human.

mRNAs bound by the same RBP show high-expression
correlation with each other and with the RBP

Keene et al. (42) and Hogan et al. (26) have observed that
RBPs tend to bind to mRNAs that are functionally
related. We used a compendium of genome-wide expres-
sion data for budding yeast under different conditions,
including different stresses, drug treatments, mutants
and cell-cycle stages, to assess expression correlations
between the RBPs and their mRNA targets (43–45). We
also used the protein interactions documented in
BioGRID (46) for RBPs and the proteins encoded by
their mRNAtargets.
After identifying the RBPs with less than 500 targets, we

investigated whether sets of mRNAs bound by the same
RBPs show higher expression correlation. For the 40
RBPs with known targets (26), we found a higher
average expression co-regulation for mRNAs bound by
the same RBP compared to pairs of mRNAs bound by
different RBPs (0.18 versus 0.16 mean of absolute correl-
ation; WRST, P< 10�16); however, expression of RBPs
was often anticorrelated with that of their targets,
leading to an average correlation close to 0. This result
was robust for RBPs with less than 50 targets each, with a
slightly decreasing but significant difference obtained with
decreasing target numbers. The expression correlation of a
pair of mRNA targets itself correlated with the number of
RBPs that bind to both of them (a maximum of 10 in our
data set, Spearman Rank correlation=0.06, P< 10�16).
Notably, pairs of mRNAs that are bound by the same
eight RBPs show considerably higher expression correl-
ation than pairs of mRNAs bound by fewer RBPs

(Figure 3A). Moreover, RBPs themselves showed signifi-
cantly higher expression correlation with their mRNA
targets across multiple conditions (WRST, P< 10�8),
compared to the randomly generated negative pairs
(Figure 3B).

RBPs that bind to the same mRNAs often interact with
each other

Many mRNAs are bound by combinations of multiple
RBPs, and RBPs that bind to the same mRNA targets
can physically interact with each other (47). To test
whether this is a general trend, we collected all physical
protein–protein interactions in BioGRID (46). These
interactions included both small- and large-scale data for
a total of 43 776 protein pairs. Notably, it was 1.5 times
more likely (Fisher’s test P=0.0004) to find physical
interactions among RBPs sharing mRNA targets than
among random pairs of RBPs from the Hogan et al.
data (Supplementary Table S2). We conclude that
RBPs-sharing mRNA targets are more likely to interact
with each other than expected by chance, even considering
that RBPs are in general more likely to interact with each
other than other proteins (Fisher’s test P< 10�16,
Supplementary Table S2). The 40 proteins with known
targets (26) are even more interconnected than the other
RBPs (Fisher’s test P=10�5). This result confirms and
extends the finding that RBPs that share sets of targets
are often known to physically interact (26) and is consist-
ent with the hypothesis of combinatorial control of
mRNAs by multiple RBPs that can form complexes (5).
The analysis was repeated using only interactions that
have at least two lines of evidence in BioGRID, excluding
Yeast-Two-Hybrid, and also using the recently assembled,
complexosome, a consensus of complexes experimentally
verified in budding yeast (48). Most of the trends identified
were confirmed although there appear to be differences in
the three data sets, with the duplicate BioGRID data
going against the observed trends (Supplementary
Table S2).

RBPs often bind to the mRNAs that encode their
interaction partners

Notably, RBPs in (26) and the cognate proteins of their
mRNA targets showed �20 times more than the expected
number of physical interactions documented in BioGRID
(Fisher’s test P< 10�16; Supplementary Table S2),
although this effect was reduced when considering more
strictly verified interactions or the consensus of yeast
complexes data set. Considering a restricted set of RBP–
mRNA pairs training set, we found 165 interactions
within the verified RBP–mRNA pairs, whereas the
average number of interactions in the 100 random sets
was 67, ranging from 52 to 80 (Figure 3C). Repeating
the analysis with the complex consensus data leads to
similar results whereas the trend is not observed in the
duplicate BioGRID data (Supplementary Figure S3).
This result raises the intriguing possibility that RBPs
tend to regulate their interaction partners at the mRNA
level, possibly generating an auto-regulatory system where
the levels of expression of all members of a complex can be
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post-transcriptionally coordinated by selected proteins
within the complex. We additionally found that when
the RBP and potential target are co-regulated, they are
even more likely to interact (Fisher’s test P< 10�11;
Supplementary Table S2). This finding is consistent with
the high-expression correlation we observed amongst
mRNAs bound by the same RBPs, and with results
indicating specialized protein production sites (49). We
note, however, that the relationship between RBPs and
their targets seems to be expressed both by positive cor-
relation and in other cases by negative correlation,
indicating that the same RBP could potentially stabilize
a set of its targets and promote the destabilization of
others.

Prediction of mRNA targets of RBPs in budding yeast

We tested whether the acquired information, obtained
from features of RBPs and their mRNA targets is suffi-
cient to predict unknown RBP targets, without any use of
motifs and experimentally measured binding specificities.
We integrated all the features described above to predict
RBP–mRNA interactions using two machine-learning
approaches, which provide probabilities for interactions
between any RBP–mRNA pair. The data from the 40
RBPs with known targets (26) and a degree balanced
randomized set were used as positive and negative
training sets, respectively (Supplementary Datasets S3
and S8, ‘Materials and Methods’ section). We trained a
SVM (24) and a RF algorithm (25) using the same data.
We measured the performance of our method using the
accuracy (proportion of correct predictions) and AUC,
which describes the relationship between false positive
and true positive rate (‘Materials and Methods’ section).
Selecting only pairs for which all data are available, we
kept a total of 5166 positive RBP–mRNA pairs for the
positive set and the same number of negative pairs.

To validate the model, we performed 2-fold cross val-
idation 10 times using both SVM and RF, where one half
of the data was used for training and the other half for

testing. We obtained an average accuracy of 0.69 and an
AUC of 0.77 (Figure 4). We also calculated the perform-
ance of the SVM based on three repeats of a 5-fold cross
validation test, where one fifth of the data was excluded
from training and predicted, reaching an average accuracy
of 65.7% (Supplementary Dataset S9). A leave-one-out
experiment gave comparable results, where all of the
training set apart from one pair was used to predict the
class of that one pair (data not shown). According to this
analysis, both SVM and RF did not suffer from over- or
under-prediction, with sensitivity and specificity both
around 70%. RF performed slightly better than SVM.
RF allows testing of the importance of each feature in
the predictions. This analysis confirmed the importance
of mRNA length as well as the relative amounts of
glycine and the presence of alpha helices in the RBP
(Supplementary Dataset S10).
Assuming that the binding of RBPs is only determined

by a preference for specific sequence or structure motifs on
target mRNAs, we would not expect our machine-learning
approaches to perform better than a random assignment
for RBPs not included in the training set, because the
preferences of the RBPs in the training set would not
suffice to predict targets for other RBPs. To test this pre-
diction, we analyzed our model’s performance on RBPs
for which no targets are known. We predicted the mRNA
targets for each RBP, having removed all interactions of
that RBP from the training sets, thus pretending not to
know any of the targets. We observed performance differ-
ences across the RBPs, and for about half of them the
accuracy was higher than random (Supplementary
Dataset S11). For the pairs that we can correctly
classify, the method tends to over-predict, with an
average sensitivity of 62% but a specificity of only 53%.
Generally, both SVM and RF achieve an accuracy of only
50% (specificity of 50% and sensitivity of 49%). There
does not appear to be any dominant characteristic for
RBPs for which we can successfully predict targets;
some of these RBPs have known RNA-binding motifs,
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Figure 3. Differences in expression correlation and interactions in the positive and negative sets. (A) The average absolute correlation of mRNAs
bound by the same RBPs is higher when more RBPs are shared (Spearman r=0.08, P< 10�16), particularly when eight RBPs bind the same two
targets. (B) The absolute expression correlation between RBP and mRNA targets is higher in the positive set of RBP–mRNA pairs (black line) than
it is in random pairs (gray circles with gray line showing the average. (C) There are more physical protein interactions between RBP and mRNA
pairs in the positive set (black line) than in the randomized sets (gray circles with gray line showing the average). The same analysis carried out on
two other interaction data sets is shown in Supplementary Figure S3.
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but their presence does not seem to be a factor affecting
the prediction (Supplementary Dataset S11).
The method seemed to work particularly well for She2p,

an RBP functioning in asymmetric localization of selected
mRNAs (50–51). We predicted many correct specific inter-
action targets for this protein, achieving an accuracy of
�70% (specificity of 83% and sensitivity of 58%).
Notably, we also predicted additional targets for this
RBP that were not included in the data from (26) but
are known from other experimental studies (50–51) and
new targets. A total of 189 mRNA targets were predicted
both by SVM and RF (Supplementary Dataset S12).
These mRNAs are enriched for the GO term ‘cell wall
organization or biogenesis’ (P=10�5, Supplementary
Dataset S12), raising the intriguing possibility that
She2p transports mRNAs involved in cell wall formation
to the site of polarized growth.
As described above, we are aware of a limitation of our

model in determining targets for RBPs for which no
targets are known. However, the input of a few mRNA
targets can substantially improve the chances of predicting
additional unknown targets. We proceeded to predict
targets of Nop15p (51), for which no targets were
included in the training sets as this RBP is not included
in the 40 RBPs with known targets (26). We correctly
identified only 6 of the 51 mRNA targets for which data
were available. However, if we included in a new enhanced
training set some of the predicted targets that are verified
experimentally (51), we recovered 32 mRNA targets
(Figure 5). Even after reducing the number of false posi-
tives by setting the threshold to 0.7 instead of 0.5, we
could still predict 16 targets, compared to the eight
expected by random guess. We conclude that our model
is currently limited by the known RBP–mRNA inter-
actions and will become more widely useful with
increasing availability of experimental data.

Prediction of mRNA targets of RBPs in fission yeast

We established that the available data in budding yeast
can be used to predict RBP targets without relying on

RNA sequence or structure motifs and with an accuracy
which will increase as more experimental data become
available. The principles underlying RBP–RNA binding
are likely conserved, and many features used for the pre-
dictions are also available in other organisms. As more
organisms are sequenced, it becomes increasingly import-
ant to exploit the annotation and functional information
available from model organisms to characterize additional
species. To test cross-species RBP target prediction, we
extended our method to fission yeast, which is only dis-
tantly related to budding yeast. A number of features used
for the budding yeast predictions could not be used to
predict fission yeast RBP targets, presumably due to ex-
perimental and/or biological differences. As the SVM
seemed to perform better on absent data, we chose this
method to extend the predictions to fission yeast. The
SVM trained on budding yeast RBP–mRNA data, but
with only a subset of the features, was used to predict
targets of four fission yeast RBPs: Csx1p, Cdc5p, Mei2p
and Meu5p. We compared our predictions with targets
identified by preliminary RIP-chip experiments for the
same RBPs (J. Mata, personal communication); reassur-
ingly, some overlaps were found (Fisher, P=10�32, 0.02,
0.06 and 0.5, respectively; TextS1, Supplementary
Figure S1 and Supplementary Dataset S13). However,
we predicted only 14 of the 76 Meu5p targets that have
been recently identified experimentally (52). This perform-
ance suggests that the application of the model across
species is limited by the features that can be used in the
training and by the assumptions about conservation,
which are quite strict and unproven. Nonetheless, these
results are encouraging, and we expect that with addition-
al experimental data becoming available for training, our
approach will show improved applicability to other
species.

Concluding remarks

Some RBPs have defined RNA binding motifs and bind to
known motifs on their target mRNAs, which suggests that
improved bioinformatics methods could be used to map

Figure 4. Performance of machine-learning approaches in 2-fold cross validation tests. ROC curves for predictions of budding yeast RBP–mRNA
interactions. (A) SVM, 10 ROC curves with average AUC=0.75. (B) RF, 10 ROC curves with average AUC=0.77. See ‘Materials and Methods’
section for details on ROC curves.
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such interactions. However, we have shown that there are
additional relationships between RBPs and their targets
which could facilitate specific target predictions independ-
ently of sequence motifs. A combination of machine-
learning and motif-based approaches may therefore be
even more powerful to uncover RBP–mRNA interactions.
Recent experiments suggest that the number of RBPs in
yeast is highly underestimated, providing experimental
evidence for proteins binding to specific RNAs without
containing any of the recognized RNA binding motifs
(53,54). These findings motivate efforts in exploring
RBP–mRNA interaction networks with less restrictive,
non-motif-centred approaches.

The two machine-learning approaches achieved compar-
able performance, although RF may produce better results
in the cross-validation stages than SVM, which were,
however, not matched by better prediction accuracy on
the test sets. An important issue in our analysis is the
small number of RBPs for which the mRNA targets have
been experimentally identified. A larger set of RBPs with
known targets would allow us to distinguish general prin-
ciples from correlations that reflect biases of the available
data. As expected, mRNA targets of RBPs for which no
targets are known were not predicted with machine
learning, with a few exceptions. Nevertheless, knowing
even a few targets of an RBP will allow prediction of add-
itional targets. Hence, a more complete training set, con-
taining a wider range of RBPs, would greatly improve the
predictive power of this approach (Figure 6). Over-fitting is

probably another limiting factor for the SVM approach,
suggesting that applying feature selection methods could
lead to improved results by increasing the method’s
generalization capability. However, RF performs feature
selection automatically, and it did not show a significantly
better performance. Moreover, we believe that some level
of redundancy in the information embodied in the features
is useful to buffer errors in experimental measurements
and in predicted features such as RNA and protein
structures.
We have shown that our method can be applied to other

species for which key features are known but the RBP
targets are not. Besides supporting the mapping of
RBP–RNA interactions in less studied organisms, there
could be an advantage in pooling together RBP targets
from different species. Such an approach would also
increase our chances of understanding the universal prin-
ciples of protein–RNA interactions that ultimately control
posttranscriptional regulatory networks.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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